model documentation
#2
by
nazneen
- opened
README.md
CHANGED
@@ -1,11 +1,199 @@
|
|
1 |
-
# XLM-RoBERTa for NER
|
2 |
-
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-ontonotes5")
|
9 |
|
10 |
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-ontonotes5")
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
---
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
---
|
6 |
+
# Model Card for XLM-RoBERTa for NER
|
7 |
+
|
8 |
+
XLM-RoBERTa finetuned on NER.
|
9 |
+
|
10 |
+
# Model Details
|
11 |
+
|
12 |
+
## Model Description
|
13 |
+
|
14 |
+
XLM-RoBERTa finetuned on NER.
|
15 |
+
- **Developed by:** Asahi Ushio
|
16 |
+
- **Shared by [Optional]:** Hugging Face
|
17 |
+
- **Model type:** Token Classification
|
18 |
+
- **Language(s) (NLP):** en
|
19 |
+
- **License:** More information needed
|
20 |
+
- **Related Models:** XLM-RoBERTa
|
21 |
+
- **Parent Model:** XLM-RoBERTa
|
22 |
+
- **Resources for more information:**
|
23 |
+
- [GitHub Repo](https://github.com/asahi417/tner)
|
24 |
+
- [Associated Paper](https://arxiv.org/abs/2209.12616)
|
25 |
+
- [Space](https://huggingface.co/spaces/akdeniz27/turkish-named-entity-recognition)
|
26 |
+
|
27 |
+
# Uses
|
28 |
+
|
29 |
+
|
30 |
+
## Direct Use
|
31 |
+
Token Classification
|
32 |
+
|
33 |
+
|
34 |
+
## Downstream Use [Optional]
|
35 |
+
|
36 |
+
This model can be used in conjunction with the [tner library](https://github.com/asahi417/tner).
|
37 |
+
|
38 |
+
## Out-of-Scope Use
|
39 |
+
|
40 |
+
|
41 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
42 |
+
|
43 |
+
# Bias, Risks, and Limitations
|
44 |
+
|
45 |
+
|
46 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
47 |
+
|
48 |
+
|
49 |
+
## Recommendations
|
50 |
+
|
51 |
+
|
52 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.
|
53 |
+
|
54 |
+
|
55 |
+
# Training Details
|
56 |
+
|
57 |
+
## Training Data
|
58 |
+
|
59 |
+
An NER dataset contains a sequence of tokens and tags for each split (usually `train`/`validation`/`test`),
|
60 |
+
```python
|
61 |
+
{
|
62 |
+
'train': {
|
63 |
+
'tokens': [
|
64 |
+
['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'],
|
65 |
+
['From', 'Green', 'Newsfeed', ':', 'AHFA', 'extends', 'deadline', 'for', 'Sage', 'Award', 'to', 'Nov', '.', '5', 'http://tinyurl.com/24agj38'], ...
|
66 |
+
],
|
67 |
+
'tags': [
|
68 |
+
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
|
69 |
+
[0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ...
|
70 |
+
]
|
71 |
+
},
|
72 |
+
'validation': ...,
|
73 |
+
'test': ...,
|
74 |
+
}
|
75 |
```
|
76 |
+
with a dictionary to map a label to its index (`label2id`) as below.
|
77 |
+
```python
|
78 |
+
{"O": 0, "B-ORG": 1, "B-MISC": 2, "B-PER": 3, "I-PER": 4, "B-LOC": 5, "I-ORG": 6, "I-MISC": 7, "I-LOC": 8}
|
79 |
+
```
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
## Training Procedure
|
85 |
+
|
86 |
+
### Preprocessing
|
87 |
+
|
88 |
+
More information needed
|
89 |
+
|
90 |
+
### Speeds, Sizes, Times
|
91 |
+
|
92 |
+
**Layer_norm_eps:** 1e-05,
|
93 |
+
**Num_attention_heads:** 12,
|
94 |
+
**Num_hidden_layers:** 12,
|
95 |
+
**Vocab_size:** 250002
|
96 |
+
|
97 |
+
# Evaluation
|
98 |
+
|
99 |
+
|
100 |
+
## Testing Data, Factors & Metrics
|
101 |
+
|
102 |
+
### Testing Data
|
103 |
+
|
104 |
+
See [dataset card](https://github.com/asahi417/tner/blob/master/DATASET_CARD.md) for full dataset lists
|
105 |
+
|
106 |
+
### Factors
|
107 |
+
More information needed
|
108 |
+
|
109 |
+
### Metrics
|
110 |
+
|
111 |
+
More information needed
|
112 |
+
|
113 |
+
## Results
|
114 |
+
|
115 |
+
More information needed
|
116 |
+
|
117 |
+
# Model Examination
|
118 |
+
More information needed
|
119 |
+
|
120 |
+
# Environmental Impact
|
121 |
+
|
122 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
123 |
+
|
124 |
+
- **Hardware Type:** More information needed
|
125 |
+
- **Hours used:** More information needed
|
126 |
+
- **Cloud Provider:** More information needed
|
127 |
+
- **Compute Region:** More information needed
|
128 |
+
- **Carbon Emitted:** More information needed
|
129 |
+
|
130 |
+
# Technical Specifications [optional]
|
131 |
+
|
132 |
+
## Model Architecture and Objective
|
133 |
+
|
134 |
+
More information needed
|
135 |
+
|
136 |
+
## Compute Infrastructure
|
137 |
+
More information needed
|
138 |
+
|
139 |
+
### Hardware
|
140 |
+
|
141 |
+
More information needed
|
142 |
+
|
143 |
+
### Software
|
144 |
+
|
145 |
+
More information needed
|
146 |
+
|
147 |
+
# Citation
|
148 |
+
|
149 |
+
|
150 |
+
**BibTeX:**
|
151 |
+
|
152 |
+
```
|
153 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
154 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
155 |
+
author = "Ushio, Asahi and
|
156 |
+
Camacho-Collados, Jose",
|
157 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
158 |
+
month = apr,
|
159 |
+
year = "2021",
|
160 |
+
address = "Online",
|
161 |
+
publisher = "Association for Computational Linguistics",
|
162 |
+
url = "https://www.aclweb.org/anthology/2021.eacl-demos.7",
|
163 |
+
pages = "53--62",
|
164 |
+
}
|
165 |
+
```
|
166 |
+
|
167 |
+
|
168 |
+
# Glossary [optional]
|
169 |
+
|
170 |
+
More information needed
|
171 |
+
|
172 |
+
# More Information [optional]
|
173 |
+
More information needed
|
174 |
+
|
175 |
+
# Model Card Authors [optional]
|
176 |
+
|
177 |
+
Asahi Ushio in collaboration with Ezi Ozoani and the Hugging Face team.
|
178 |
+
|
179 |
+
# Model Card Contact
|
180 |
+
|
181 |
+
More information needed
|
182 |
+
|
183 |
+
# How to Get Started with the Model
|
184 |
+
|
185 |
+
Use the code below to get started with the model.
|
186 |
+
|
187 |
+
<details>
|
188 |
+
<summary> Click to expand </summary>
|
189 |
+
|
190 |
+
```python
|
191 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
192 |
|
193 |
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-ontonotes5")
|
194 |
|
195 |
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-ontonotes5")
|
196 |
+
|
197 |
+
```
|
198 |
+
|
199 |
+
</details>
|