metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v-bert-2.0-CV_Fleurs-lg-50hrs-v5
results: []
w2v-bert-2.0-CV_Fleurs-lg-50hrs-v5
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3755
- Wer: 0.3108
- Cer: 0.0651
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 80
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.8769 | 1.0 | 6320 | 0.3126 | 0.3631 | 0.0763 |
0.2352 | 2.0 | 12640 | 0.2544 | 0.3542 | 0.0705 |
0.2161 | 3.0 | 18960 | 0.2639 | 0.3415 | 0.0695 |
0.2088 | 4.0 | 25280 | 0.2666 | 0.3524 | 0.0745 |
0.2063 | 5.0 | 31600 | 0.2863 | 0.3655 | 0.0789 |
0.2043 | 6.0 | 37920 | 0.2792 | 0.3409 | 0.0700 |
0.2036 | 7.0 | 44240 | 0.2787 | 0.3519 | 0.0736 |
0.2051 | 8.0 | 50560 | 0.2774 | 0.3550 | 0.0746 |
0.1967 | 9.0 | 56880 | 0.2710 | 0.3457 | 0.0728 |
0.1754 | 10.0 | 63200 | 0.2714 | 0.3425 | 0.0721 |
0.157 | 11.0 | 69520 | 0.2800 | 0.3490 | 0.0727 |
0.1411 | 12.0 | 75840 | 0.2571 | 0.3165 | 0.0671 |
0.1305 | 13.0 | 82160 | 0.2768 | 0.3486 | 0.0726 |
0.1164 | 14.0 | 88480 | 0.2963 | 0.3330 | 0.0718 |
0.1067 | 15.0 | 94800 | 0.2663 | 0.3131 | 0.0670 |
0.0954 | 16.0 | 101120 | 0.2660 | 0.3254 | 0.0667 |
0.0849 | 17.0 | 107440 | 0.2751 | 0.3103 | 0.0659 |
0.0769 | 18.0 | 113760 | 0.2721 | 0.3290 | 0.0695 |
0.0675 | 19.0 | 120080 | 0.2986 | 0.3148 | 0.0670 |
0.0606 | 20.0 | 126400 | 0.2850 | 0.3122 | 0.0653 |
0.0536 | 21.0 | 132720 | 0.2987 | 0.3260 | 0.0687 |
0.0478 | 22.0 | 139040 | 0.3226 | 0.3191 | 0.0654 |
0.0429 | 23.0 | 145360 | 0.2981 | 0.3373 | 0.0678 |
0.038 | 24.0 | 151680 | 0.3210 | 0.3172 | 0.0656 |
0.0343 | 25.0 | 158000 | 0.3454 | 0.3056 | 0.0635 |
0.0311 | 26.0 | 164320 | 0.3092 | 0.3153 | 0.0655 |
0.0283 | 27.0 | 170640 | 0.3285 | 0.3165 | 0.0647 |
0.0265 | 28.0 | 176960 | 0.3413 | 0.3125 | 0.0650 |
0.024 | 29.0 | 183280 | 0.3894 | 0.3062 | 0.0636 |
0.0223 | 30.0 | 189600 | 0.3681 | 0.3084 | 0.0645 |
0.0205 | 31.0 | 195920 | 0.3552 | 0.3134 | 0.0655 |
0.0188 | 32.0 | 202240 | 0.3656 | 0.3105 | 0.0661 |
0.018 | 33.0 | 208560 | 0.3640 | 0.3148 | 0.0659 |
0.0163 | 34.0 | 214880 | 0.3805 | 0.3099 | 0.0649 |
0.0153 | 35.0 | 221200 | 0.3755 | 0.3108 | 0.0651 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.1