metadata
library_name: transformers
language:
- lg
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- yogera
metrics:
- wer
model-index:
- name: wav2vec2-bert
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Yogera
type: yogera
metrics:
- name: Wer
type: wer
value: 0.2828398665554629
wav2vec2-bert
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Yogera dataset. It achieves the following results on the evaluation set:
- Loss: 0.5797
- Wer: 0.2828
- Cer: 0.0600
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
3.9705 | 1.0 | 20 | 2.7517 | 0.9999 | 0.8635 |
1.6229 | 2.0 | 40 | 0.7456 | 0.7959 | 0.1852 |
0.5343 | 3.0 | 60 | 0.4631 | 0.5219 | 0.1081 |
0.3188 | 4.0 | 80 | 0.3815 | 0.3815 | 0.0788 |
0.2219 | 5.0 | 100 | 0.3961 | 0.3946 | 0.0786 |
0.18 | 6.0 | 120 | 0.3851 | 0.3340 | 0.0698 |
0.1388 | 7.0 | 140 | 0.4074 | 0.3508 | 0.0723 |
0.1262 | 8.0 | 160 | 0.3911 | 0.3110 | 0.0665 |
0.0883 | 9.0 | 180 | 0.4100 | 0.3058 | 0.0636 |
0.0681 | 10.0 | 200 | 0.4071 | 0.3096 | 0.0644 |
0.0553 | 11.0 | 220 | 0.4505 | 0.3132 | 0.0662 |
0.0546 | 12.0 | 240 | 0.4836 | 0.3156 | 0.0681 |
0.038 | 13.0 | 260 | 0.4465 | 0.2941 | 0.0631 |
0.0374 | 14.0 | 280 | 0.5048 | 0.3071 | 0.0645 |
0.0275 | 15.0 | 300 | 0.4964 | 0.2901 | 0.0600 |
0.0207 | 16.0 | 320 | 0.4497 | 0.2946 | 0.0611 |
0.0163 | 17.0 | 340 | 0.4992 | 0.2867 | 0.0599 |
0.0248 | 18.0 | 360 | 0.5160 | 0.2952 | 0.0626 |
0.0139 | 19.0 | 380 | 0.5196 | 0.2960 | 0.0612 |
0.0177 | 20.0 | 400 | 0.5026 | 0.2933 | 0.0608 |
0.013 | 21.0 | 420 | 0.5212 | 0.2852 | 0.0603 |
0.0103 | 22.0 | 440 | 0.5277 | 0.2847 | 0.0599 |
0.01 | 23.0 | 460 | 0.5850 | 0.2802 | 0.0597 |
0.0088 | 24.0 | 480 | 0.5362 | 0.2841 | 0.0584 |
0.0074 | 25.0 | 500 | 0.5401 | 0.2974 | 0.0612 |
0.0087 | 26.0 | 520 | 0.5586 | 0.2858 | 0.0593 |
0.0077 | 27.0 | 540 | 0.5924 | 0.2859 | 0.0614 |
0.0114 | 28.0 | 560 | 0.5722 | 0.2828 | 0.0599 |
0.0118 | 29.0 | 580 | 0.5475 | 0.2842 | 0.0579 |
0.0102 | 30.0 | 600 | 0.5249 | 0.2851 | 0.0584 |
0.0083 | 31.0 | 620 | 0.5724 | 0.2801 | 0.0584 |
0.0087 | 32.0 | 640 | 0.5742 | 0.2799 | 0.0596 |
0.0098 | 33.0 | 660 | 0.5797 | 0.2828 | 0.0600 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1