sulaimank's picture
End of training
a6b47d0 verified
metadata
library_name: transformers
language:
  - lg
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - yogera
metrics:
  - wer
model-index:
  - name: wav2vec2-bert
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Yogera
          type: yogera
        metrics:
          - name: Wer
            type: wer
            value: 0.18076661374461328

wav2vec2-bert

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Yogera dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3420
  • Wer: 0.1808
  • Cer: 0.0385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.0247 1.0 57 0.3818 0.4570 0.0903
0.3116 2.0 114 0.2514 0.3059 0.0614
0.2069 3.0 171 0.2253 0.2704 0.0555
0.1586 4.0 228 0.2139 0.2601 0.0506
0.1293 5.0 285 0.2124 0.2200 0.0458
0.1052 6.0 342 0.2168 0.2087 0.0438
0.0864 7.0 399 0.2385 0.2110 0.0444
0.0791 8.0 456 0.2177 0.2030 0.0424
0.068 9.0 513 0.2356 0.2002 0.0422
0.0609 10.0 570 0.2482 0.2083 0.0429
0.0496 11.0 627 0.2482 0.1977 0.0438
0.0467 12.0 684 0.2556 0.1978 0.0419
0.0398 13.0 741 0.2688 0.1960 0.0409
0.0369 14.0 798 0.2580 0.1951 0.0411
0.0349 15.0 855 0.2673 0.1989 0.0426
0.0333 16.0 912 0.2926 0.1936 0.0413
0.0295 17.0 969 0.2854 0.1962 0.0408
0.0241 18.0 1026 0.2841 0.1888 0.0406
0.0221 19.0 1083 0.2928 0.1954 0.0419
0.0213 20.0 1140 0.3104 0.2041 0.0436
0.0208 21.0 1197 0.2975 0.1881 0.0416
0.0217 22.0 1254 0.2764 0.1913 0.0417
0.0193 23.0 1311 0.2933 0.1928 0.0419
0.0135 24.0 1368 0.3073 0.1859 0.0401
0.0146 25.0 1425 0.2925 0.1851 0.0401
0.0156 26.0 1482 0.3120 0.1898 0.0407
0.0137 27.0 1539 0.2996 0.1915 0.0428
0.0116 28.0 1596 0.3228 0.1859 0.0409
0.011 29.0 1653 0.3331 0.1915 0.0416
0.0116 30.0 1710 0.3209 0.1804 0.0391
0.0083 31.0 1767 0.3333 0.1862 0.0400
0.006 32.0 1824 0.3504 0.1854 0.0398
0.0075 33.0 1881 0.3189 0.1965 0.0413
0.0054 34.0 1938 0.3461 0.1837 0.0398
0.0074 35.0 1995 0.3263 0.1867 0.0402
0.0071 36.0 2052 0.3430 0.1876 0.0401
0.0068 37.0 2109 0.3381 0.1913 0.0411
0.0097 38.0 2166 0.3150 0.1937 0.0416
0.0079 39.0 2223 0.3313 0.1856 0.0405
0.0062 40.0 2280 0.3420 0.1808 0.0385

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1