sulaimank's picture
End of training
8ab949a verified
|
raw
history blame
8.71 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-CV_Fleurs_AMMI_ALFFA-sw-200hrs-v1
    results: []

wav2vec2-xls-r-300m-CV_Fleurs_AMMI_ALFFA-sw-200hrs-v1

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6946
  • Wer: 0.1373
  • Cer: 0.0454

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.6189 1.0 8064 0.5376 0.4012 0.1324
0.7423 2.0 16128 0.4487 0.2992 0.0890
0.6218 3.0 24192 0.4022 0.2694 0.0811
0.5548 4.0 32256 0.3769 0.2610 0.0793
0.5081 5.0 40320 0.3396 0.2463 0.0758
0.4712 6.0 48384 0.3460 0.2382 0.0744
0.4421 7.0 56448 0.3419 0.2297 0.0711
0.418 8.0 64512 0.3165 0.2230 0.0686
0.3977 9.0 72576 0.3380 0.2389 0.0843
0.3748 10.0 80640 0.3046 0.2174 0.0691
0.3587 11.0 88704 0.3301 0.2114 0.0663
0.3423 12.0 96768 0.3172 0.2048 0.0629
0.3282 13.0 104832 0.3118 0.2056 0.0672
0.3132 14.0 112896 0.3213 0.1971 0.0607
0.3009 15.0 120960 0.3292 0.1926 0.0619
0.2887 16.0 129024 0.2949 0.1963 0.0603
0.2778 17.0 137088 0.3066 0.1884 0.0590
0.2649 18.0 145152 0.3105 0.1883 0.0589
0.254 19.0 153216 0.3161 0.1851 0.0583
0.2444 20.0 161280 0.3183 0.1812 0.0567
0.2364 21.0 169344 0.3306 0.1803 0.0579
0.2281 22.0 177408 0.3106 0.1818 0.0573
0.219 23.0 185472 0.3367 0.1826 0.0573
0.2102 24.0 193536 0.3485 0.1747 0.0551
0.2027 25.0 201600 0.3619 0.1765 0.0558
0.1962 26.0 209664 0.3609 0.1729 0.0547
0.1907 27.0 217728 0.3344 0.1754 0.0554
0.1839 28.0 225792 0.3001 0.1770 0.0565
0.1784 29.0 233856 0.3524 0.1696 0.0550
0.1727 30.0 241920 0.3270 0.1767 0.0558
0.1653 31.0 249984 0.3251 0.1732 0.0554
0.161 32.0 258048 0.3885 0.1672 0.0539
0.1575 33.0 266112 0.3292 0.1675 0.0536
0.1532 34.0 274176 0.3686 0.1682 0.0541
0.1483 35.0 282240 0.3920 0.1641 0.0531
0.1449 36.0 290304 0.4157 0.1626 0.0527
0.1411 37.0 298368 0.3790 0.1706 0.0544
0.1366 38.0 306432 0.3723 0.1690 0.0546
0.1342 39.0 314496 0.3982 0.1645 0.0528
0.1311 40.0 322560 0.4210 0.1623 0.0522
0.127 41.0 330624 0.3935 0.1688 0.0541
0.1235 42.0 338688 0.3883 0.1603 0.0516
0.1215 43.0 346752 0.4329 0.1631 0.0521
0.1179 44.0 354816 0.3834 0.1691 0.0554
0.1145 45.0 362880 0.3790 0.1639 0.0523
0.1121 46.0 370944 0.4199 0.1618 0.0520
0.1103 47.0 379008 0.4275 0.1605 0.0516
0.1067 48.0 387072 0.4024 0.1605 0.0520
0.1061 49.0 395136 0.4334 0.1569 0.0516
0.1023 50.0 403200 0.4152 0.1566 0.0509
0.0999 51.0 411264 0.4638 0.1571 0.0509
0.0988 52.0 419328 0.4478 0.1577 0.0512
0.0956 53.0 427392 0.4565 0.1558 0.0505
0.0935 54.0 435456 0.4681 0.1595 0.0514
0.0911 55.0 443520 0.4740 0.1558 0.0503
0.0894 56.0 451584 0.4746 0.1535 0.0500
0.0881 57.0 459648 0.4513 0.1550 0.0503
0.0861 58.0 467712 0.5096 0.1538 0.0498
0.0831 59.0 475776 0.4405 0.1561 0.0509
0.0828 60.0 483840 0.4725 0.1507 0.0492
0.0811 61.0 491904 0.4770 0.1527 0.0500
0.079 62.0 499968 0.5079 0.1511 0.0495
0.0767 63.0 508032 0.4888 0.1511 0.0494
0.0752 64.0 516096 0.4707 0.1522 0.0494
0.0737 65.0 524160 0.4891 0.1537 0.0497
0.0721 66.0 532224 0.5608 0.1488 0.0488
0.0701 67.0 540288 0.5018 0.1527 0.0497
0.0685 68.0 548352 0.5504 0.1476 0.0482
0.0675 69.0 556416 0.5235 0.1473 0.0481
0.0652 70.0 564480 0.5468 0.1499 0.0488
0.0634 71.0 572544 0.5204 0.1488 0.0485
0.0623 72.0 580608 0.5535 0.1485 0.0483
0.0617 73.0 588672 0.5842 0.1456 0.0479
0.0598 74.0 596736 0.5706 0.1490 0.0481
0.0582 75.0 604800 0.5647 0.1469 0.0478
0.0568 76.0 612864 0.5678 0.1475 0.0484
0.0558 77.0 620928 0.5805 0.1469 0.0483
0.0549 78.0 628992 0.5655 0.1448 0.0474
0.0538 79.0 637056 0.5573 0.1446 0.0476
0.0524 80.0 645120 0.5953 0.1425 0.0472
0.0514 81.0 653184 0.6070 0.1422 0.0475
0.0503 82.0 661248 0.5991 0.1427 0.0468
0.0496 83.0 669312 0.6211 0.1421 0.0469
0.0479 84.0 677376 0.5988 0.1431 0.0470
0.0458 85.0 685440 0.6471 0.1418 0.0468
0.0463 86.0 693504 0.6437 0.1415 0.0469
0.0447 87.0 701568 0.6472 0.1415 0.0464
0.0449 88.0 709632 0.6418 0.1407 0.0465
0.043 89.0 717696 0.6302 0.1391 0.0461
0.0419 90.0 725760 0.6287 0.1417 0.0464
0.0402 91.0 733824 0.6573 0.1404 0.0464
0.0403 92.0 741888 0.6369 0.1397 0.0458
0.0397 93.0 749952 0.6820 0.1391 0.0459
0.0385 94.0 758016 0.6853 0.1380 0.0456
0.038 95.0 766080 0.6592 0.1384 0.0459
0.0372 96.0 774144 0.6826 0.1373 0.0454
0.0361 97.0 782208 0.6724 0.1371 0.0456
0.0355 98.0 790272 0.6876 0.1372 0.0455
0.0354 99.0 798336 0.6837 0.1372 0.0454
0.0354 100.0 806400 0.6946 0.1373 0.0454

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.1