|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-xls-r-300m-Fleurs_AMMI_AFRIVOICE_LRSC-ln-20hrs-v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-xls-r-300m-Fleurs_AMMI_AFRIVOICE_LRSC-ln-20hrs-v2 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3763 |
|
- Wer: 0.2252 |
|
- Cer: 0.0740 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 5.6396 | 1.0 | 1423 | 2.8770 | 1.0 | 1.0 | |
|
| 2.8585 | 2.0 | 2846 | 2.7805 | 1.0 | 1.0 | |
|
| 2.131 | 3.0 | 4269 | 1.0970 | 0.7618 | 0.2105 | |
|
| 1.2082 | 4.0 | 5692 | 0.7337 | 0.5150 | 0.1455 | |
|
| 0.9577 | 5.0 | 7115 | 0.5965 | 0.4144 | 0.1220 | |
|
| 0.8269 | 6.0 | 8538 | 0.5259 | 0.3800 | 0.1142 | |
|
| 0.7495 | 7.0 | 9961 | 0.5030 | 0.3515 | 0.1058 | |
|
| 0.69 | 8.0 | 11384 | 0.4540 | 0.3472 | 0.1020 | |
|
| 0.6471 | 9.0 | 12807 | 0.4356 | 0.3291 | 0.0990 | |
|
| 0.6132 | 10.0 | 14230 | 0.4083 | 0.3299 | 0.0997 | |
|
| 0.5859 | 11.0 | 15653 | 0.4029 | 0.3063 | 0.0924 | |
|
| 0.5537 | 12.0 | 17076 | 0.4057 | 0.3201 | 0.0992 | |
|
| 0.5426 | 13.0 | 18499 | 0.3984 | 0.2917 | 0.0894 | |
|
| 0.5156 | 14.0 | 19922 | 0.3756 | 0.2850 | 0.0869 | |
|
| 0.5007 | 15.0 | 21345 | 0.3751 | 0.2812 | 0.0870 | |
|
| 0.485 | 16.0 | 22768 | 0.3957 | 0.2712 | 0.0842 | |
|
| 0.4757 | 17.0 | 24191 | 0.3705 | 0.2714 | 0.0842 | |
|
| 0.4596 | 18.0 | 25614 | 0.3626 | 0.2612 | 0.0813 | |
|
| 0.4478 | 19.0 | 27037 | 0.3639 | 0.2689 | 0.0834 | |
|
| 0.44 | 20.0 | 28460 | 0.3683 | 0.2620 | 0.0816 | |
|
| 0.4272 | 21.0 | 29883 | 0.3550 | 0.2632 | 0.0846 | |
|
| 0.4175 | 22.0 | 31306 | 0.3603 | 0.2543 | 0.0804 | |
|
| 0.4015 | 23.0 | 32729 | 0.3432 | 0.2544 | 0.0803 | |
|
| 0.3977 | 24.0 | 34152 | 0.3496 | 0.2519 | 0.0792 | |
|
| 0.3904 | 25.0 | 35575 | 0.3661 | 0.2452 | 0.0773 | |
|
| 0.3786 | 26.0 | 36998 | 0.3655 | 0.2463 | 0.0782 | |
|
| 0.3711 | 27.0 | 38421 | 0.3467 | 0.2463 | 0.0790 | |
|
| 0.3631 | 28.0 | 39844 | 0.3537 | 0.2463 | 0.0783 | |
|
| 0.3593 | 29.0 | 41267 | 0.3609 | 0.2361 | 0.0756 | |
|
| 0.3464 | 30.0 | 42690 | 0.3335 | 0.2531 | 0.0820 | |
|
| 0.3458 | 31.0 | 44113 | 0.3588 | 0.2365 | 0.0750 | |
|
| 0.3402 | 32.0 | 45536 | 0.3510 | 0.2352 | 0.0751 | |
|
| 0.3329 | 33.0 | 46959 | 0.3464 | 0.2362 | 0.0762 | |
|
| 0.3307 | 34.0 | 48382 | 0.3471 | 0.2340 | 0.0762 | |
|
| 0.3199 | 35.0 | 49805 | 0.3741 | 0.2374 | 0.0765 | |
|
| 0.3185 | 36.0 | 51228 | 0.3385 | 0.2390 | 0.0767 | |
|
| 0.3137 | 37.0 | 52651 | 0.3572 | 0.2317 | 0.0743 | |
|
| 0.3059 | 38.0 | 54074 | 0.3745 | 0.2294 | 0.0734 | |
|
| 0.3024 | 39.0 | 55497 | 0.3968 | 0.2299 | 0.0741 | |
|
| 0.2958 | 40.0 | 56920 | 0.3469 | 0.2317 | 0.0756 | |
|
| 0.296 | 41.0 | 58343 | 0.3302 | 0.2495 | 0.0823 | |
|
| 0.2927 | 42.0 | 59766 | 0.3747 | 0.2261 | 0.0730 | |
|
| 0.2842 | 43.0 | 61189 | 0.3799 | 0.2216 | 0.0719 | |
|
| 0.2754 | 44.0 | 62612 | 0.3530 | 0.2602 | 0.0988 | |
|
| 0.2781 | 45.0 | 64035 | 0.3907 | 0.2237 | 0.0726 | |
|
| 0.2656 | 46.0 | 65458 | 0.3523 | 0.2397 | 0.0824 | |
|
| 0.2649 | 47.0 | 66881 | 0.3621 | 0.2289 | 0.0762 | |
|
| 0.2605 | 48.0 | 68304 | 0.3946 | 0.2259 | 0.0727 | |
|
| 0.2633 | 49.0 | 69727 | 0.3852 | 0.2233 | 0.0737 | |
|
| 0.2623 | 50.0 | 71150 | 0.3821 | 0.2247 | 0.0731 | |
|
| 0.2544 | 51.0 | 72573 | 0.3742 | 0.2226 | 0.0723 | |
|
| 0.2512 | 52.0 | 73996 | 0.3686 | 0.2229 | 0.0731 | |
|
| 0.2522 | 53.0 | 75419 | 0.3763 | 0.2252 | 0.0740 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.1 |
|
|