metadata
license: other
library_name: transformers
base_model:
- Qwen/Qwen2.5-72B-Instruct
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
model-index:
- name: Replete-LLM-V2.5-Qwen-72b_Duplicated
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 71.55
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 61.27
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 47.58
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.8
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 17.32
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 54.83
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated
name: Open LLM Leaderboard
Rombos-LLM-V2.5-Qwen-72b
Rombos-LLM-V2.5-Qwen-72b is a continues finetuned version of Qwen2.5-72B. I noticed recently that the Qwen team did not learn from my methods of continuous finetuning, the great benefits, and no downsides of it. So I took it upon myself to merge the instruct model with the base model myself using the Ties merge method
This version of the model shows higher performance than the original instruct and base models.
Quants: (Coming soon)
GGUF: https://huggingface.co/bartowski/Replete-LLM-V2.5-Qwen-72b-GGUF
EXL2:
Benchmarks: (Coming soon)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 45.39 |
IFEval (0-Shot) | 71.55 |
BBH (3-Shot) | 61.27 |
MATH Lvl 5 (4-Shot) | 47.58 |
GPQA (0-shot) | 19.80 |
MuSR (0-shot) | 17.32 |
MMLU-PRO (5-shot) | 54.83 |