Tagalog
English
Generated from Trainer
BUOD_bert2bert_TM / README.md
0xhaz's picture
Create README.md
3d6ba30
|
raw
history blame
1.69 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: bert2bert-cnn_dailymail-fp16-finetuned-1.0.0
    results: []
datasets:
  - ateneoscsl/BUOD_articlescraper
  - cnn_dailymail
language:
  - tl
  - en

πŸ“‹ BUOD: bert2bert Transformer Model

Model:Bert2Bert This model is a fine-tuned version of patrickvonplaten/bert2bert-cnn_dailymail-fp16 on on KAMI-3000 for the task of Filipino Text Summarization. Bert2Bert is a EncoderDecoderModel, meaning that both the encoder and the decoder are bert-base-uncased BERT models.

It achieves the following results on the evaluation set:

  • Loss: 2.3346
  • Rouge1: 46.3609
  • Rouge2: 18.8105
  • Rougel: 30.215
  • Rougelsum: 42.3642

πŸ”§ Finetuning/ Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.8263 1.0 586 2.4478 45.3367 18.3604 29.713 41.2805
2.1264 2.0 1172 2.3346 46.3609 18.8105 30.215 42.3642

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1
  • Datasets 2.10.0
  • Tokenizers 0.13.2