Terjman-Ultra (1.3B)
Our model is built upon the powerful Transformer architecture, leveraging state-of-the-art natural language processing techniques. It is a fine-tuned version of facebook/nllb-200-1.3B on a the darija_english dataset enhanced with curated corpora ensuring high-quality and accurate translations.
It achieves the following results on the evaluation set:
- Loss: 2.7070
- Bleu: 4.6998
- Gen Len: 35.6088
The finetuning was conducted using a A100-40GB and took 32 hours.
Try it out on our dedicated Terjman-Ultra Space 🤗
Usage
Using our model for translation is simple and straightforward. You can integrate it into your projects or workflows via the Hugging Face Transformers library. Here's a basic example of how to use the model in Python:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("atlasia/Terjman-Ultra")
model = AutoModelForSeq2SeqLM.from_pretrained("atlasia/Terjman-Ultra")
# Define your Moroccan Darija Arabizi text
input_text = "Your english text goes here."
# Tokenize the input text
input_tokens = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
# Perform translation
output_tokens = model.generate(**input_tokens)
# Decode the output tokens
output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
print("Translation:", output_text)
Example
Let's see an example of transliterating Moroccan Darija Arabizi to Arabic:
Input: "Hi my friend, can you tell me a joke in moroccan darija? I'd be happy to hear that from you!"
Output: "أهلا صاحبي، تقدر تقولي مزحة بالدارجة المغربية؟ غادي نكون فرحان باش نسمعها منك!"
Limiations
This version has some limitations mainly due to the Tokenizer. We're currently collecting more data with the aim of continous improvements.
Feedback
We're continuously striving to improve our model's performance and usability and we will be improving it incrementaly. If you have any feedback, suggestions, or encounter any issues, please don't hesitate to reach out to us.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
3.203 | 0.9999 | 2242 | 2.9015 | 4.3057 | 36.7548 |
2.9175 | 1.9998 | 4484 | 2.7602 | 4.4286 | 35.708 |
2.8558 | 2.9997 | 6726 | 2.7303 | 4.629 | 35.562 |
2.8696 | 4.0 | 8969 | 2.7195 | 4.6537 | 35.562 |
2.8604 | 4.9999 | 11211 | 2.7144 | 4.6905 | 35.5702 |
2.8509 | 5.9998 | 13453 | 2.7112 | 4.599 | 35.5427 |
2.853 | 6.9997 | 15695 | 2.7098 | 4.6625 | 35.5317 |
2.8475 | 8.0 | 17938 | 2.7081 | 4.6901 | 35.6419 |
2.8192 | 8.9999 | 20180 | 2.7082 | 4.5474 | 35.6391 |
2.8395 | 9.9998 | 22422 | 2.7077 | 4.722 | 35.6088 |
2.8395 | 10.9997 | 24664 | 2.7076 | 4.752 | 35.5868 |
2.8362 | 12.0 | 26907 | 2.7074 | 4.6664 | 35.562 |
2.8673 | 12.9999 | 29149 | 2.7072 | 4.7004 | 35.6639 |
2.8465 | 13.9998 | 31391 | 2.7076 | 4.6715 | 35.5923 |
2.8281 | 14.9997 | 33633 | 2.7075 | 4.7045 | 35.5647 |
2.8191 | 16.0 | 35876 | 2.7068 | 4.7487 | 35.6253 |
2.874 | 16.9999 | 38118 | 2.7076 | 4.71 | 35.6006 |
2.8666 | 17.9998 | 40360 | 2.7069 | 4.6047 | 35.6281 |
2.8645 | 18.9997 | 42602 | 2.7063 | 4.6664 | 35.6088 |
2.8458 | 20.0 | 44845 | 2.7070 | 4.6552 | 35.5813 |
2.8501 | 20.9999 | 47087 | 2.7074 | 4.6919 | 35.5647 |
2.8309 | 21.9998 | 49329 | 2.7074 | 4.623 | 35.6226 |
2.854 | 22.9997 | 51571 | 2.7072 | 4.6495 | 35.5978 |
2.8407 | 24.0 | 53814 | 2.7070 | 4.6879 | 35.5482 |
2.8129 | 24.9972 | 56050 | 2.7070 | 4.6998 | 35.6088 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 21
Model tree for atlasia/Terjman-Ultra
Base model
facebook/nllb-200-1.3B