austinmw's picture
update model card README.md
bfc5945
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - tweet_eval
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased-finetuned-tweets-sentiment
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          args: sentiment
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7295
          - name: F1
            type: f1
            value: 0.7303196028048928

distilbert-base-uncased-finetuned-tweets-sentiment

This model is a fine-tuned version of distilbert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8192
  • Accuracy: 0.7295
  • F1: 0.7303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.7126 1.0 713 0.6578 0.7185 0.7181
0.5514 2.0 1426 0.6249 0.7005 0.7046
0.4406 3.0 2139 0.7053 0.731 0.7296
0.3511 4.0 2852 0.7580 0.718 0.7180
0.2809 5.0 3565 0.8192 0.7295 0.7303

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0
  • Datasets 1.16.1
  • Tokenizers 0.10.3