|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: autoevaluate-binary-classification |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: glue |
|
type: glue |
|
args: sst2 |
|
metrics: |
|
- type: accuracy |
|
value: 0.8967889908256881 |
|
name: Accuracy |
|
- type: accuracy |
|
value: 0.8967889908256881 |
|
name: Accuracy |
|
verified: true |
|
- type: precision |
|
value: 0.8898678414096917 |
|
name: Precision |
|
verified: true |
|
- type: recall |
|
value: 0.9099099099099099 |
|
name: Recall |
|
verified: true |
|
- type: auc |
|
value: 0.967247621453229 |
|
name: AUC |
|
verified: true |
|
- type: f1 |
|
value: 0.8997772828507795 |
|
name: F1 |
|
verified: true |
|
- type: loss |
|
value: 0.30091655254364014 |
|
name: loss |
|
verified: true |
|
- type: matthews_correlation |
|
value: 0.793630584795814 |
|
name: matthews_correlation |
|
verified: true |
|
- type: accuracy |
|
value: 0.8967889908256881 |
|
name: Accuracy |
|
verified: true |
|
verifyToken: '1234' |
|
- type: precision |
|
value: 0.8898678414096917 |
|
name: Precision |
|
verified: true |
|
verifyToken: '1234' |
|
- type: recall |
|
value: 0.9099099099099099 |
|
name: Recall |
|
verified: true |
|
verifyToken: '1234' |
|
- type: auc |
|
value: 0.967247621453229 |
|
name: AUC |
|
verified: true |
|
verifyToken: '1234' |
|
- type: f1 |
|
value: 0.8997772828507795 |
|
name: F1 |
|
verified: true |
|
verifyToken: '1234' |
|
- type: loss |
|
value: 0.30091655254364014 |
|
name: loss |
|
verified: true |
|
verifyToken: '1234' |
|
- type: matthews_correlation |
|
value: 0.793630584795814 |
|
name: matthews_correlation |
|
verified: true |
|
verifyToken: '1234' |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# binary-classification |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3009 |
|
- Accuracy: 0.8968 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.175 | 1.0 | 4210 | 0.3009 | 0.8968 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|