hebEMO_trust / README.md
avichr's picture
Update README.md
8bca4df
# HebEMO - Emotion Recognition Model for Modern Hebrew
<img align="right" src="https://github.com/avichaychriqui/HeBERT/blob/main/data/heBERT_logo.png?raw=true" width="250">
HebEMO is a tool that detects polarity and extracts emotions from modern Hebrew User-Generated Content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated.
HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification.
Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.
## Emotion UGC Data Description
Our UGC data includes comments posted on news articles collected from 3 major Israeli news sites, between January 2020 to August 2020. The total size of the data is ~150 MB, including over 7 million words and 350K sentences.
~2000 sentences were annotated by crowd members (3-10 annotators per sentence) for overall sentiment (polarity) and [eight emotions](https://en.wikipedia.org/wiki/Robert_Plutchik#Plutchik's_wheel_of_emotions): anger, disgust, anticipation , fear, joy, sadness, surprise and trust.
The percentage of sentences in which each emotion appeared is found in the table below.
| | anger | disgust | expectation | fear | happy | sadness | surprise | trust | sentiment |
|------:|------:|--------:|------------:|-----:|------:|--------:|---------:|------:|-----------|
| **ratio** | 0.78 | 0.83 | 0.58 | 0.45 | 0.12 | 0.59 | 0.17 | 0.11 | 0.25 |
## Performance
### Emotion Recognition
| emotion | f1-score | precision | recall |
|-------------|----------|-----------|----------|
| anger | 0.96 | 0.99 | 0.93 |
| disgust | 0.97 | 0.98 | 0.96 |
|anticipation | 0.82 | 0.80 | 0.87 |
| fear | 0.79 | 0.88 | 0.72 |
| joy | 0.90 | 0.97 | 0.84 |
| sadness | 0.90 | 0.86 | 0.94 |
| surprise | 0.40 | 0.44 | 0.37 |
| trust | 0.83 | 0.86 | 0.80 |
*The above metrics is for positive class (meaning, the emotion is reflected in the text).*
### Sentiment (Polarity) Analysis
| | precision | recall | f1-score |
|--------------|-----------|--------|----------|
| neutral | 0.83 | 0.56 | 0.67 |
| positive | 0.96 | 0.92 | 0.94 |
| negative | 0.97 | 0.99 | 0.98 |
| accuracy | | | 0.97 |
| macro avg | 0.92 | 0.82 | 0.86 |
| weighted avg | 0.96 | 0.97 | 0.96 |
*Sentiment (polarity) analysis model is also available on AWS! for more information visit [AWS' git](https://github.com/aws-samples/aws-lambda-docker-serverless-inference/tree/main/hebert-sentiment-analysis-inference-docker-lambda)*
## How to use
### Emotion Recognition Model
An online model can be found at [huggingface spaces](https://huggingface.co/spaces/avichr/HebEMO_demo) or as [colab notebook](https://colab.research.google.com/drive/1Jw3gOWjwVMcZslu-ttXoNeD17lms1-ff?usp=sharing)
```
# !pip install pyplutchik==0.0.7
# !pip install transformers==4.14.1
!git clone https://github.com/avichaychriqui/HeBERT.git
from HeBERT.src.HebEMO import *
HebEMO_model = HebEMO()
HebEMO_model.hebemo(input_path = 'data/text_example.txt')
# return analyzed pandas.DataFrame
hebEMO_df = HebEMO_model.hebemo(text='ื”ื—ื™ื™ื ื™ืคื™ื ื•ืžืื•ืฉืจื™ื', plot=True)
```
<img src="https://github.com/avichaychriqui/HeBERT/blob/main/data/hebEMO1.png?raw=true" width="300" height="300" />
### For sentiment classification model (polarity ONLY):
from transformers import AutoTokenizer, AutoModel, pipeline
tokenizer = AutoTokenizer.from_pretrained("avichr/heBERT_sentiment_analysis") #same as 'avichr/heBERT' tokenizer
model = AutoModel.from_pretrained("avichr/heBERT_sentiment_analysis")
# how to use?
sentiment_analysis = pipeline(
"sentiment-analysis",
model="avichr/heBERT_sentiment_analysis",
tokenizer="avichr/heBERT_sentiment_analysis",
return_all_scores = True
)
sentiment_analysis('ืื ื™ ืžืชืœื‘ื˜ ืžื” ืœืื›ื•ืœ ืœืืจื•ื—ืช ืฆื”ืจื™ื™ื')
>>> [[{'label': 'neutral', 'score': 0.9978172183036804},
>>> {'label': 'positive', 'score': 0.0014792329166084528},
>>> {'label': 'negative', 'score': 0.0007035882445052266}]]
sentiment_analysis('ืงืคื” ื–ื” ื˜ืขื™ื')
>>> [[{'label': 'neutral', 'score': 0.00047328314394690096},
>>> {'label': 'possitive', 'score': 0.9994067549705505},
>>> {'label': 'negetive', 'score': 0.00011996887042187154}]]
sentiment_analysis('ืื ื™ ืœื ืื•ื”ื‘ ืืช ื”ืขื•ืœื')
>>> [[{'label': 'neutral', 'score': 9.214012970915064e-05},
>>> {'label': 'possitive', 'score': 8.876807987689972e-05},
>>> {'label': 'negetive', 'score': 0.9998190999031067}]]
## Contact us
[Avichay Chriqui](mailto:[email protected]) <br>
[Inbal yahav](mailto:[email protected]) <br>
The Coller Semitic Languages AI Lab <br>
Thank you, ืชื•ื“ื”, ุดูƒุฑุง <br>
## If you used this model please cite us as :
Chriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming.
```
@article{chriqui2021hebert,
title={HeBERT \& HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition},
author={Chriqui, Avihay and Yahav, Inbal},
journal={INFORMS Journal on Data Science},
year={2022}
}
```