avinasht's picture
Acc0.8645443196004994, F10.8640003212817835 , Augmented with roberta-base.csv, finetuned on SALT-NLP/FLANG-BERT
72934a3 verified
|
raw
history blame
2.47 kB
metadata
base_model: SALT-NLP/FLANG-BERT
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: FLANG-BERT_roberta-base
    results: []

FLANG-BERT_roberta-base

This model is a fine-tuned version of SALT-NLP/FLANG-BERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5101
  • Accuracy: 0.8643
  • F1: 0.8637
  • Precision: 0.8638
  • Recall: 0.8643

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.841 1.0 91 0.7542 0.6895 0.6505 0.7281 0.6895
0.4766 2.0 182 0.4469 0.8159 0.8161 0.8201 0.8159
0.3539 3.0 273 0.3916 0.8456 0.8459 0.8473 0.8456
0.2452 4.0 364 0.4667 0.8362 0.8348 0.8369 0.8362
0.1646 5.0 455 0.4408 0.8643 0.8636 0.8643 0.8643
0.1273 6.0 546 0.5101 0.8643 0.8637 0.8638 0.8643
0.1052 7.0 637 0.7249 0.8393 0.8369 0.8413 0.8393
0.0889 8.0 728 0.5791 0.8424 0.8413 0.8419 0.8424
0.0846 9.0 819 0.5522 0.8580 0.8576 0.8577 0.8580
0.0764 10.0 910 0.7277 0.8549 0.8549 0.8555 0.8549
0.1531 11.0 1001 0.6068 0.8424 0.8407 0.8441 0.8424

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1