Specify library_name metadata
#1
by
tomaarsen
HF staff
- opened
README.md
CHANGED
@@ -946,7 +946,7 @@ model-index:
|
|
946 |
- type: precision_at_10
|
947 |
value: 5.743
|
948 |
- type: precision_at_100
|
949 |
-
value: 1
|
950 |
- type: precision_at_1000
|
951 |
value: 0.14300000000000002
|
952 |
- type: precision_at_3
|
@@ -2223,7 +2223,7 @@ model-index:
|
|
2223 |
- type: map_at_5
|
2224 |
value: 70.15
|
2225 |
- type: mrr_at_1
|
2226 |
-
value: 64
|
2227 |
- type: mrr_at_10
|
2228 |
value: 71.82300000000001
|
2229 |
- type: mrr_at_100
|
@@ -2235,7 +2235,7 @@ model-index:
|
|
2235 |
- type: mrr_at_5
|
2236 |
value: 71.11699999999999
|
2237 |
- type: ndcg_at_1
|
2238 |
-
value: 64
|
2239 |
- type: ndcg_at_10
|
2240 |
value: 75.286
|
2241 |
- type: ndcg_at_100
|
@@ -2247,7 +2247,7 @@ model-index:
|
|
2247 |
- type: ndcg_at_5
|
2248 |
value: 73.36399999999999
|
2249 |
- type: precision_at_1
|
2250 |
-
value: 64
|
2251 |
- type: precision_at_10
|
2252 |
value: 9.9
|
2253 |
- type: precision_at_100
|
@@ -2288,7 +2288,7 @@ model-index:
|
|
2288 |
- type: cos_sim_precision
|
2289 |
value: 92.3076923076923
|
2290 |
- type: cos_sim_recall
|
2291 |
-
value: 90
|
2292 |
- type: dot_accuracy
|
2293 |
value: 99.7980198019802
|
2294 |
- type: dot_ap
|
@@ -2399,7 +2399,7 @@ model-index:
|
|
2399 |
- type: map_at_5
|
2400 |
value: 0.941
|
2401 |
- type: mrr_at_1
|
2402 |
-
value: 76
|
2403 |
- type: mrr_at_10
|
2404 |
value: 85.85199999999999
|
2405 |
- type: mrr_at_100
|
@@ -2411,7 +2411,7 @@ model-index:
|
|
2411 |
- type: mrr_at_5
|
2412 |
value: 85.56700000000001
|
2413 |
- type: ndcg_at_1
|
2414 |
-
value: 71
|
2415 |
- type: ndcg_at_10
|
2416 |
value: 69.60300000000001
|
2417 |
- type: ndcg_at_100
|
@@ -2423,7 +2423,7 @@ model-index:
|
|
2423 |
- type: ndcg_at_5
|
2424 |
value: 71.17599999999999
|
2425 |
- type: precision_at_1
|
2426 |
-
value: 76
|
2427 |
- type: precision_at_10
|
2428 |
value: 74.2
|
2429 |
- type: precision_at_100
|
@@ -2456,13 +2456,13 @@ model-index:
|
|
2456 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
2457 |
metrics:
|
2458 |
- type: accuracy
|
2459 |
-
value: 8
|
2460 |
- type: f1
|
2461 |
value: 6.298401229470593
|
2462 |
- type: precision
|
2463 |
value: 5.916991709050532
|
2464 |
- type: recall
|
2465 |
-
value: 8
|
2466 |
- task:
|
2467 |
type: BitextMining
|
2468 |
dataset:
|
@@ -2592,13 +2592,13 @@ model-index:
|
|
2592 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
2593 |
metrics:
|
2594 |
- type: accuracy
|
2595 |
-
value: 22
|
2596 |
- type: f1
|
2597 |
value: 17.4576947358322
|
2598 |
- type: precision
|
2599 |
value: 16.261363669827777
|
2600 |
- type: recall
|
2601 |
-
value: 22
|
2602 |
- task:
|
2603 |
type: BitextMining
|
2604 |
dataset:
|
@@ -2745,13 +2745,13 @@ model-index:
|
|
2745 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
2746 |
metrics:
|
2747 |
- type: accuracy
|
2748 |
-
value: 0
|
2749 |
- type: f1
|
2750 |
-
value: 0
|
2751 |
- type: precision
|
2752 |
-
value: 0
|
2753 |
- type: recall
|
2754 |
-
value: 0
|
2755 |
- task:
|
2756 |
type: BitextMining
|
2757 |
dataset:
|
@@ -2813,13 +2813,13 @@ model-index:
|
|
2813 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
2814 |
metrics:
|
2815 |
- type: accuracy
|
2816 |
-
value: 4
|
2817 |
- type: f1
|
2818 |
value: 2.3800704501963432
|
2819 |
- type: precision
|
2820 |
value: 2.0919368034607455
|
2821 |
- type: recall
|
2822 |
-
value: 4
|
2823 |
- task:
|
2824 |
type: BitextMining
|
2825 |
dataset:
|
@@ -2949,13 +2949,13 @@ model-index:
|
|
2949 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
2950 |
metrics:
|
2951 |
- type: accuracy
|
2952 |
-
value: 21
|
2953 |
- type: f1
|
2954 |
value: 18.965901242066018
|
2955 |
- type: precision
|
2956 |
value: 18.381437375171
|
2957 |
- type: recall
|
2958 |
-
value: 21
|
2959 |
- task:
|
2960 |
type: BitextMining
|
2961 |
dataset:
|
@@ -3119,13 +3119,13 @@ model-index:
|
|
3119 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3120 |
metrics:
|
3121 |
- type: accuracy
|
3122 |
-
value: 1
|
3123 |
- type: f1
|
3124 |
value: 0.7764001197963462
|
3125 |
- type: precision
|
3126 |
value: 0.7551049317943337
|
3127 |
- type: recall
|
3128 |
-
value: 1
|
3129 |
- task:
|
3130 |
type: BitextMining
|
3131 |
dataset:
|
@@ -3289,13 +3289,13 @@ model-index:
|
|
3289 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3290 |
metrics:
|
3291 |
- type: accuracy
|
3292 |
-
value: 6
|
3293 |
- type: f1
|
3294 |
value: 4.58716840215435
|
3295 |
- type: precision
|
3296 |
value: 4.303119297298687
|
3297 |
- type: recall
|
3298 |
-
value: 6
|
3299 |
- task:
|
3300 |
type: BitextMining
|
3301 |
dataset:
|
@@ -3833,13 +3833,13 @@ model-index:
|
|
3833 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3834 |
metrics:
|
3835 |
- type: accuracy
|
3836 |
-
value: 10
|
3837 |
- type: f1
|
3838 |
value: 7.351901305737391
|
3839 |
- type: precision
|
3840 |
value: 6.759061952118555
|
3841 |
- type: recall
|
3842 |
-
value: 10
|
3843 |
- task:
|
3844 |
type: BitextMining
|
3845 |
dataset:
|
@@ -3918,13 +3918,13 @@ model-index:
|
|
3918 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3919 |
metrics:
|
3920 |
- type: accuracy
|
3921 |
-
value: 3
|
3922 |
- type: f1
|
3923 |
value: 1.5834901411814404
|
3924 |
- type: precision
|
3925 |
value: 1.3894010894944848
|
3926 |
- type: recall
|
3927 |
-
value: 3
|
3928 |
- task:
|
3929 |
type: BitextMining
|
3930 |
dataset:
|
@@ -4571,6 +4571,7 @@ model-index:
|
|
4571 |
language:
|
4572 |
- en
|
4573 |
license: mit
|
|
|
4574 |
---
|
4575 |
<h1 align="center">GIST Embedding v0</h1>
|
4576 |
|
@@ -4648,4 +4649,4 @@ The model was evaluated using the [MTEB Evaluation](https://huggingface.co/mteb)
|
|
4648 |
|
4649 |
This work is supported by the "KCP IV - Exploring Data Use in the Development Economics Literature using Large Language Models (AI and LLMs)" project funded by the [Knowledge for Change Program (KCP)](https://www.worldbank.org/en/programs/knowledge-for-change) of the World Bank - RA-P503405-RESE-TF0C3444.
|
4650 |
|
4651 |
-
The findings, interpretations, and conclusions expressed in this material are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
|
|
|
946 |
- type: precision_at_10
|
947 |
value: 5.743
|
948 |
- type: precision_at_100
|
949 |
+
value: 1
|
950 |
- type: precision_at_1000
|
951 |
value: 0.14300000000000002
|
952 |
- type: precision_at_3
|
|
|
2223 |
- type: map_at_5
|
2224 |
value: 70.15
|
2225 |
- type: mrr_at_1
|
2226 |
+
value: 64
|
2227 |
- type: mrr_at_10
|
2228 |
value: 71.82300000000001
|
2229 |
- type: mrr_at_100
|
|
|
2235 |
- type: mrr_at_5
|
2236 |
value: 71.11699999999999
|
2237 |
- type: ndcg_at_1
|
2238 |
+
value: 64
|
2239 |
- type: ndcg_at_10
|
2240 |
value: 75.286
|
2241 |
- type: ndcg_at_100
|
|
|
2247 |
- type: ndcg_at_5
|
2248 |
value: 73.36399999999999
|
2249 |
- type: precision_at_1
|
2250 |
+
value: 64
|
2251 |
- type: precision_at_10
|
2252 |
value: 9.9
|
2253 |
- type: precision_at_100
|
|
|
2288 |
- type: cos_sim_precision
|
2289 |
value: 92.3076923076923
|
2290 |
- type: cos_sim_recall
|
2291 |
+
value: 90
|
2292 |
- type: dot_accuracy
|
2293 |
value: 99.7980198019802
|
2294 |
- type: dot_ap
|
|
|
2399 |
- type: map_at_5
|
2400 |
value: 0.941
|
2401 |
- type: mrr_at_1
|
2402 |
+
value: 76
|
2403 |
- type: mrr_at_10
|
2404 |
value: 85.85199999999999
|
2405 |
- type: mrr_at_100
|
|
|
2411 |
- type: mrr_at_5
|
2412 |
value: 85.56700000000001
|
2413 |
- type: ndcg_at_1
|
2414 |
+
value: 71
|
2415 |
- type: ndcg_at_10
|
2416 |
value: 69.60300000000001
|
2417 |
- type: ndcg_at_100
|
|
|
2423 |
- type: ndcg_at_5
|
2424 |
value: 71.17599999999999
|
2425 |
- type: precision_at_1
|
2426 |
+
value: 76
|
2427 |
- type: precision_at_10
|
2428 |
value: 74.2
|
2429 |
- type: precision_at_100
|
|
|
2456 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
2457 |
metrics:
|
2458 |
- type: accuracy
|
2459 |
+
value: 8
|
2460 |
- type: f1
|
2461 |
value: 6.298401229470593
|
2462 |
- type: precision
|
2463 |
value: 5.916991709050532
|
2464 |
- type: recall
|
2465 |
+
value: 8
|
2466 |
- task:
|
2467 |
type: BitextMining
|
2468 |
dataset:
|
|
|
2592 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
2593 |
metrics:
|
2594 |
- type: accuracy
|
2595 |
+
value: 22
|
2596 |
- type: f1
|
2597 |
value: 17.4576947358322
|
2598 |
- type: precision
|
2599 |
value: 16.261363669827777
|
2600 |
- type: recall
|
2601 |
+
value: 22
|
2602 |
- task:
|
2603 |
type: BitextMining
|
2604 |
dataset:
|
|
|
2745 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
2746 |
metrics:
|
2747 |
- type: accuracy
|
2748 |
+
value: 0
|
2749 |
- type: f1
|
2750 |
+
value: 0
|
2751 |
- type: precision
|
2752 |
+
value: 0
|
2753 |
- type: recall
|
2754 |
+
value: 0
|
2755 |
- task:
|
2756 |
type: BitextMining
|
2757 |
dataset:
|
|
|
2813 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
2814 |
metrics:
|
2815 |
- type: accuracy
|
2816 |
+
value: 4
|
2817 |
- type: f1
|
2818 |
value: 2.3800704501963432
|
2819 |
- type: precision
|
2820 |
value: 2.0919368034607455
|
2821 |
- type: recall
|
2822 |
+
value: 4
|
2823 |
- task:
|
2824 |
type: BitextMining
|
2825 |
dataset:
|
|
|
2949 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
2950 |
metrics:
|
2951 |
- type: accuracy
|
2952 |
+
value: 21
|
2953 |
- type: f1
|
2954 |
value: 18.965901242066018
|
2955 |
- type: precision
|
2956 |
value: 18.381437375171
|
2957 |
- type: recall
|
2958 |
+
value: 21
|
2959 |
- task:
|
2960 |
type: BitextMining
|
2961 |
dataset:
|
|
|
3119 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3120 |
metrics:
|
3121 |
- type: accuracy
|
3122 |
+
value: 1
|
3123 |
- type: f1
|
3124 |
value: 0.7764001197963462
|
3125 |
- type: precision
|
3126 |
value: 0.7551049317943337
|
3127 |
- type: recall
|
3128 |
+
value: 1
|
3129 |
- task:
|
3130 |
type: BitextMining
|
3131 |
dataset:
|
|
|
3289 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3290 |
metrics:
|
3291 |
- type: accuracy
|
3292 |
+
value: 6
|
3293 |
- type: f1
|
3294 |
value: 4.58716840215435
|
3295 |
- type: precision
|
3296 |
value: 4.303119297298687
|
3297 |
- type: recall
|
3298 |
+
value: 6
|
3299 |
- task:
|
3300 |
type: BitextMining
|
3301 |
dataset:
|
|
|
3833 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3834 |
metrics:
|
3835 |
- type: accuracy
|
3836 |
+
value: 10
|
3837 |
- type: f1
|
3838 |
value: 7.351901305737391
|
3839 |
- type: precision
|
3840 |
value: 6.759061952118555
|
3841 |
- type: recall
|
3842 |
+
value: 10
|
3843 |
- task:
|
3844 |
type: BitextMining
|
3845 |
dataset:
|
|
|
3918 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3919 |
metrics:
|
3920 |
- type: accuracy
|
3921 |
+
value: 3
|
3922 |
- type: f1
|
3923 |
value: 1.5834901411814404
|
3924 |
- type: precision
|
3925 |
value: 1.3894010894944848
|
3926 |
- type: recall
|
3927 |
+
value: 3
|
3928 |
- task:
|
3929 |
type: BitextMining
|
3930 |
dataset:
|
|
|
4571 |
language:
|
4572 |
- en
|
4573 |
license: mit
|
4574 |
+
library_name: sentence-transformers
|
4575 |
---
|
4576 |
<h1 align="center">GIST Embedding v0</h1>
|
4577 |
|
|
|
4649 |
|
4650 |
This work is supported by the "KCP IV - Exploring Data Use in the Development Economics Literature using Large Language Models (AI and LLMs)" project funded by the [Knowledge for Change Program (KCP)](https://www.worldbank.org/en/programs/knowledge-for-change) of the World Bank - RA-P503405-RESE-TF0C3444.
|
4651 |
|
4652 |
+
The findings, interpretations, and conclusions expressed in this material are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
|