WB Doc Topics
Collection
This is a collection of models trained on synthetically generated sentences conditional on WBG topics. The models are designed for ensembling.
•
22 items
•
Updated
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0935 | 0.4931 | 1000 | 0.0895 | 0.9815 | 0.0 | 0.0 | 0.0 |
0.0764 | 0.9862 | 2000 | 0.0700 | 0.9815 | 0.0 | 0.0 | 0.0 |
0.0621 | 1.4793 | 3000 | 0.0567 | 0.9821 | 0.0730 | 0.8925 | 0.0381 |
0.0542 | 1.9724 | 4000 | 0.0497 | 0.9841 | 0.2891 | 0.8391 | 0.1747 |
0.0468 | 2.4655 | 5000 | 0.0465 | 0.9853 | 0.4216 | 0.7739 | 0.2897 |
0.0441 | 2.9586 | 6000 | 0.0435 | 0.9861 | 0.4879 | 0.7667 | 0.3578 |
0.0395 | 3.4517 | 7000 | 0.0417 | 0.9862 | 0.5322 | 0.7197 | 0.4222 |
0.0384 | 3.9448 | 8000 | 0.0401 | 0.9866 | 0.5600 | 0.7182 | 0.4589 |
0.0343 | 4.4379 | 9000 | 0.0393 | 0.9870 | 0.5789 | 0.7217 | 0.4833 |
0.0337 | 4.9310 | 10000 | 0.0378 | 0.9873 | 0.5907 | 0.7358 | 0.4934 |
0.0305 | 5.4241 | 11000 | 0.0375 | 0.9875 | 0.5960 | 0.7457 | 0.4963 |
0.0295 | 5.9172 | 12000 | 0.0378 | 0.9874 | 0.6050 | 0.7213 | 0.5210 |
0.0271 | 6.4103 | 13000 | 0.0376 | 0.9877 | 0.6048 | 0.7457 | 0.5087 |
0.0257 | 6.9034 | 14000 | 0.0379 | 0.9875 | 0.6068 | 0.7269 | 0.5208 |
0.0234 | 7.3964 | 15000 | 0.0377 | 0.9876 | 0.6246 | 0.7108 | 0.5571 |
0.0241 | 7.8895 | 16000 | 0.0381 | 0.9878 | 0.6228 | 0.7288 | 0.5437 |
Base model
microsoft/deberta-v3-small