WB Doc Topics
Collection
This is a collection of models trained on synthetically generated sentences conditional on WBG topics. The models are designed for ensembling.
•
22 items
•
Updated
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0935 | 0.4931 | 1000 | 0.0898 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0764 | 0.9862 | 2000 | 0.0702 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0621 | 1.4793 | 3000 | 0.0570 | 0.9820 | 0.0695 | 0.8912 | 0.0362 |
0.0542 | 1.9724 | 4000 | 0.0498 | 0.9840 | 0.2864 | 0.8319 | 0.1730 |
0.0468 | 2.4655 | 5000 | 0.0468 | 0.9852 | 0.4191 | 0.7753 | 0.2872 |
0.0441 | 2.9586 | 6000 | 0.0435 | 0.9861 | 0.4898 | 0.7741 | 0.3582 |
0.0395 | 3.4517 | 7000 | 0.0418 | 0.9860 | 0.5279 | 0.7116 | 0.4196 |
0.0384 | 3.9448 | 8000 | 0.0401 | 0.9866 | 0.5588 | 0.7206 | 0.4564 |
0.0343 | 4.4379 | 9000 | 0.0392 | 0.9869 | 0.5774 | 0.7226 | 0.4809 |
0.0337 | 4.9310 | 10000 | 0.0378 | 0.9873 | 0.5919 | 0.7400 | 0.4932 |
0.0305 | 5.4241 | 11000 | 0.0373 | 0.9876 | 0.5989 | 0.7503 | 0.4983 |
0.0295 | 5.9172 | 12000 | 0.0378 | 0.9875 | 0.6108 | 0.7303 | 0.5249 |
0.0271 | 6.4103 | 13000 | 0.0375 | 0.9877 | 0.6080 | 0.7490 | 0.5116 |
0.0257 | 6.9034 | 14000 | 0.0377 | 0.9876 | 0.6145 | 0.7284 | 0.5313 |
0.0234 | 7.3964 | 15000 | 0.0377 | 0.9876 | 0.6243 | 0.7147 | 0.5542 |
0.0241 | 7.8895 | 16000 | 0.0378 | 0.9879 | 0.6261 | 0.7349 | 0.5454 |
Base model
microsoft/deberta-v3-small