WB Doc Topics
Collection
This is a collection of models trained on synthetically generated sentences conditional on WBG topics. The models are designed for ensembling.
•
22 items
•
Updated
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0934 | 0.4929 | 1000 | 0.0902 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0778 | 0.9857 | 2000 | 0.0701 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0618 | 1.4786 | 3000 | 0.0565 | 0.9828 | 0.1749 | 0.8221 | 0.0978 |
0.0535 | 1.9714 | 4000 | 0.0488 | 0.9842 | 0.3301 | 0.7895 | 0.2087 |
0.0473 | 2.4643 | 5000 | 0.0452 | 0.9856 | 0.4668 | 0.7510 | 0.3386 |
0.0436 | 2.9571 | 6000 | 0.0424 | 0.9860 | 0.4963 | 0.7467 | 0.3717 |
0.0389 | 3.4500 | 7000 | 0.0403 | 0.9865 | 0.5326 | 0.7503 | 0.4128 |
0.0376 | 3.9428 | 8000 | 0.0396 | 0.9865 | 0.5587 | 0.7128 | 0.4594 |
0.0339 | 4.4357 | 9000 | 0.0388 | 0.9867 | 0.5583 | 0.7351 | 0.4500 |
0.0337 | 4.9285 | 10000 | 0.0385 | 0.9871 | 0.5737 | 0.7467 | 0.4658 |
0.0295 | 5.4214 | 11000 | 0.0377 | 0.9871 | 0.6013 | 0.7109 | 0.5210 |
0.0305 | 5.9142 | 12000 | 0.0383 | 0.9871 | 0.5951 | 0.7187 | 0.5078 |
0.0254 | 6.4071 | 13000 | 0.0373 | 0.9874 | 0.6115 | 0.7197 | 0.5316 |
0.0273 | 6.9000 | 14000 | 0.0378 | 0.9876 | 0.6175 | 0.7268 | 0.5367 |
0.0228 | 7.3928 | 15000 | 0.0379 | 0.9875 | 0.6101 | 0.7257 | 0.5262 |
0.0235 | 7.8857 | 16000 | 0.0380 | 0.9872 | 0.6269 | 0.6861 | 0.5772 |
0.0208 | 8.3785 | 17000 | 0.0382 | 0.9877 | 0.6348 | 0.7077 | 0.5756 |
0.0204 | 8.8714 | 18000 | 0.0382 | 0.9878 | 0.6398 | 0.7120 | 0.5810 |
Base model
microsoft/deberta-v3-small