WB Doc Topics
Collection
This is a collection of models trained on synthetically generated sentences conditional on WBG topics. The models are designed for ensembling.
•
22 items
•
Updated
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0944 | 0.4931 | 1000 | 0.0898 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0769 | 0.9862 | 2000 | 0.0686 | 0.9815 | 0.0014 | 1.0 | 0.0007 |
0.0607 | 1.4793 | 3000 | 0.0560 | 0.9822 | 0.1055 | 0.7889 | 0.0565 |
0.0535 | 1.9724 | 4000 | 0.0501 | 0.9844 | 0.3655 | 0.7509 | 0.2415 |
0.0466 | 2.4655 | 5000 | 0.0451 | 0.9855 | 0.4766 | 0.7195 | 0.3563 |
0.0441 | 2.9586 | 6000 | 0.0422 | 0.9862 | 0.5028 | 0.7586 | 0.3760 |
0.0391 | 3.4517 | 7000 | 0.0407 | 0.9864 | 0.5452 | 0.7205 | 0.4385 |
0.0372 | 3.9448 | 8000 | 0.0393 | 0.9868 | 0.5492 | 0.7506 | 0.4330 |
0.0336 | 4.4379 | 9000 | 0.0385 | 0.9870 | 0.5695 | 0.7416 | 0.4622 |
0.0337 | 4.9310 | 10000 | 0.0378 | 0.9873 | 0.5876 | 0.7361 | 0.4889 |
0.0297 | 5.4241 | 11000 | 0.0371 | 0.9874 | 0.6048 | 0.7266 | 0.5179 |
0.0296 | 5.9172 | 12000 | 0.0379 | 0.9873 | 0.5827 | 0.7472 | 0.4776 |
0.0263 | 6.4103 | 13000 | 0.0377 | 0.9875 | 0.6168 | 0.7152 | 0.5422 |
0.0272 | 6.9034 | 14000 | 0.0376 | 0.9875 | 0.6209 | 0.7090 | 0.5523 |
0.0234 | 7.3964 | 15000 | 0.0377 | 0.9878 | 0.6221 | 0.7277 | 0.5433 |
0.0243 | 7.8895 | 16000 | 0.0378 | 0.9877 | 0.6237 | 0.7228 | 0.5485 |
Base model
microsoft/deberta-v3-small