Edit model card

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0339
  • Answer: {'precision': 0.4001766784452297, 'recall': 0.5599505562422744, 'f1': 0.46676970633693976, 'number': 809}
  • Header: {'precision': 0.3146067415730337, 'recall': 0.23529411764705882, 'f1': 0.2692307692307692, 'number': 119}
  • Question: {'precision': 0.5092221331194867, 'recall': 0.596244131455399, 'f1': 0.5493079584775085, 'number': 1065}
  • Overall Precision: 0.4522
  • Overall Recall: 0.5600
  • Overall F1: 0.5003
  • Overall Accuracy: 0.6347

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.6941 1.0 10 1.4585 {'precision': 0.09797822706065319, 'recall': 0.1557478368355995, 'f1': 0.12028639618138426, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2629193109700816, 'recall': 0.27230046948356806, 'f1': 0.26752767527675275, 'number': 1065} 0.1741 0.2087 0.1899 0.3863
1.3912 2.0 20 1.3157 {'precision': 0.19625137816979052, 'recall': 0.4400494437577256, 'f1': 0.27144491040792984, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2574061882817643, 'recall': 0.3671361502347418, 'f1': 0.3026315789473684, 'number': 1065} 0.2231 0.3748 0.2797 0.4259
1.2646 3.0 30 1.1981 {'precision': 0.23537234042553193, 'recall': 0.43757725587144625, 'f1': 0.30609597924773024, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.35086633663366334, 'recall': 0.532394366197183, 'f1': 0.42297650130548303, 'number': 1065} 0.2908 0.4621 0.3570 0.4979
1.1512 4.0 40 1.0937 {'precision': 0.2754578754578755, 'recall': 0.4647713226205192, 'f1': 0.3459061637534499, 'number': 809} {'precision': 0.12048192771084337, 'recall': 0.08403361344537816, 'f1': 0.09900990099009901, 'number': 119} {'precision': 0.3988563259471051, 'recall': 0.523943661971831, 'f1': 0.45292207792207795, 'number': 1065} 0.3316 0.4737 0.3901 0.5719
1.052 5.0 50 1.0996 {'precision': 0.2841163310961969, 'recall': 0.47095179233621753, 'f1': 0.35441860465116287, 'number': 809} {'precision': 0.23529411764705882, 'recall': 0.13445378151260504, 'f1': 0.17112299465240638, 'number': 119} {'precision': 0.40622929092113985, 'recall': 0.5755868544600939, 'f1': 0.47630147630147635, 'number': 1065} 0.3461 0.5068 0.4113 0.5719
0.9901 6.0 60 1.0590 {'precision': 0.3064992614475628, 'recall': 0.5129789864029666, 'f1': 0.3837263060564031, 'number': 809} {'precision': 0.2345679012345679, 'recall': 0.15966386554621848, 'f1': 0.18999999999999997, 'number': 119} {'precision': 0.4610441767068273, 'recall': 0.5389671361502347, 'f1': 0.496969696969697, 'number': 1065} 0.3761 0.5058 0.4314 0.6011
0.9158 7.0 70 1.0134 {'precision': 0.3295238095238095, 'recall': 0.4276885043263288, 'f1': 0.3722431414739107, 'number': 809} {'precision': 0.26506024096385544, 'recall': 0.18487394957983194, 'f1': 0.21782178217821785, 'number': 119} {'precision': 0.45186226282501757, 'recall': 0.603755868544601, 'f1': 0.5168810289389068, 'number': 1065} 0.3955 0.5073 0.4445 0.6314
0.8626 8.0 80 1.0097 {'precision': 0.3275862068965517, 'recall': 0.46971569839307786, 'f1': 0.3859827323514474, 'number': 809} {'precision': 0.3157894736842105, 'recall': 0.20168067226890757, 'f1': 0.24615384615384614, 'number': 119} {'precision': 0.44047619047619047, 'recall': 0.6253521126760564, 'f1': 0.5168800931315483, 'number': 1065} 0.3894 0.5369 0.4514 0.6276
0.8026 9.0 90 1.0030 {'precision': 0.372310570626754, 'recall': 0.4919653893695921, 'f1': 0.42385516506922255, 'number': 809} {'precision': 0.2736842105263158, 'recall': 0.2184873949579832, 'f1': 0.2429906542056075, 'number': 119} {'precision': 0.49289454001495886, 'recall': 0.6187793427230047, 'f1': 0.5487094088259784, 'number': 1065} 0.4330 0.5434 0.4820 0.6410
0.794 10.0 100 1.0143 {'precision': 0.3772893772893773, 'recall': 0.5092707045735476, 'f1': 0.4334560757496055, 'number': 809} {'precision': 0.2857142857142857, 'recall': 0.20168067226890757, 'f1': 0.23645320197044337, 'number': 119} {'precision': 0.4923572003218021, 'recall': 0.5746478873239437, 'f1': 0.5303292894280762, 'number': 1065} 0.4332 0.5258 0.4751 0.6380
0.7156 11.0 110 1.0071 {'precision': 0.38151875571820676, 'recall': 0.515451174289246, 'f1': 0.43848580441640383, 'number': 809} {'precision': 0.2828282828282828, 'recall': 0.23529411764705882, 'f1': 0.25688073394495414, 'number': 119} {'precision': 0.5, 'recall': 0.6131455399061033, 'f1': 0.5508224377899621, 'number': 1065} 0.4396 0.5509 0.4890 0.6393
0.7015 12.0 120 1.0361 {'precision': 0.3828867761452031, 'recall': 0.5475896168108776, 'f1': 0.45066124109867756, 'number': 809} {'precision': 0.3111111111111111, 'recall': 0.23529411764705882, 'f1': 0.2679425837320574, 'number': 119} {'precision': 0.49387442572741197, 'recall': 0.6056338028169014, 'f1': 0.5440742302825812, 'number': 1065} 0.4371 0.5600 0.4910 0.6326
0.681 13.0 130 1.0591 {'precision': 0.38740293356341676, 'recall': 0.5550061804697157, 'f1': 0.4563008130081301, 'number': 809} {'precision': 0.345679012345679, 'recall': 0.23529411764705882, 'f1': 0.27999999999999997, 'number': 119} {'precision': 0.5167074164629177, 'recall': 0.5953051643192488, 'f1': 0.5532286212914486, 'number': 1065} 0.4503 0.5575 0.4982 0.6299
0.6461 14.0 140 1.0191 {'precision': 0.38854625550660793, 'recall': 0.5451174289245982, 'f1': 0.45370370370370366, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.23529411764705882, 'f1': 0.27586206896551724, 'number': 119} {'precision': 0.49961330239752516, 'recall': 0.6065727699530516, 'f1': 0.547921967769296, 'number': 1065} 0.4439 0.5595 0.4950 0.6351
0.6518 15.0 150 1.0339 {'precision': 0.4001766784452297, 'recall': 0.5599505562422744, 'f1': 0.46676970633693976, 'number': 809} {'precision': 0.3146067415730337, 'recall': 0.23529411764705882, 'f1': 0.2692307692307692, 'number': 119} {'precision': 0.5092221331194867, 'recall': 0.596244131455399, 'f1': 0.5493079584775085, 'number': 1065} 0.4522 0.5600 0.5003 0.6347

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for awahiro/layoutlm-funsd

Finetuned
(134)
this model