Edit model card

Test Result

Model WER CER
flozi00/wav2vec2-large-xlsr-53-german-with-lm 5.7467896819046755% 1.8980142607670552%

Evaluation

The model can be evaluated as follows on the German test data of Common Voice.

import torchaudio.functional as F
import torch
from transformers import AutoModelForCTC, AutoProcessor
import re
from datasets import load_dataset, load_metric

CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
                   "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
                   "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
                   "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
                   "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]

chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

counter = 0
wer_counter = 0
cer_counter = 0

def main():
    model = AutoModelForCTC.from_pretrained("flozi00/wav2vec2-large-xlsr-53-german-with-lm")
    processor = AutoProcessor.from_pretrained("flozi00/wav2vec2-large-xlsr-53-german-with-lm")

    wer = load_metric("wer")
    cer = load_metric("cer")

    ds = load_dataset("common_voice", "de", split="test")
    #ds = ds.select(range(100))

    def calculate_metrics(batch):
        global counter, wer_counter, cer_counter
        resampled_audio = F.resample(torch.tensor(batch["audio"]["array"]), 48_000, 16_000).numpy()

        input_values = processor(resampled_audio, return_tensors="pt", sampling_rate=16_000).input_values

        with torch.no_grad():
            logits = model(input_values).logits.numpy()[0]


        decoded = processor.decode(logits)
        pred = decoded.text

        ref = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()

        wer_result = wer.compute(predictions=[pred], references=[ref])
        cer_result = cer.compute(predictions=[pred], references=[ref])

        counter += 1
        wer_counter += wer_result
        cer_counter += cer_result

        print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}")

        return batch


    ds.map(calculate_metrics, remove_columns=ds.column_names)
    
main()

Credits:

The Acoustic model is an copy of jonatasgrosman's model I used to train an matching kenlm language model for

Downloads last month
49
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train aware-ai/wav2vec2-large-xlsr-53-german-with-lm

Space using aware-ai/wav2vec2-large-xlsr-53-german-with-lm 1

Evaluation results