Edit model card

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EL dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3218
  • Wer: 0.3095

Training and evaluation data

Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_el.ipynb"

Test WER without LM wer = 31.1294 % cer = 7.9509 %

Test WER using LM wer = 20.7340 % cer = 6.0466 %

How to use eval.py

huggingface-cli login #login to huggingface for getting auth token to access the common voice v8
#running with LM
!python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-el --dataset mozilla-foundation/common_voice_8_0 --config el --split test
# running without LM
!python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-el --dataset mozilla-foundation/common_voice_8_0 --config el --split test --greedy

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 80.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.3683 8.77 500 3.1280 1.0
1.9915 17.54 1000 0.6600 0.6444
0.6565 26.32 1500 0.4208 0.4486
0.4484 35.09 2000 0.3885 0.4006
0.3573 43.86 2500 0.3548 0.3626
0.3063 52.63 3000 0.3375 0.3430
0.2751 61.4 3500 0.3359 0.3241
0.2511 70.18 4000 0.3222 0.3108
0.2361 78.95 4500 0.3205 0.3084

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
31
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ayameRushia/wav2vec2-large-xls-r-300m-el

Evaluation results