Badr Abdullah
Model save
cd49254 verified
|
raw
history blame
3.74 kB
metadata
license: cc-by-nc-4.0
base_model: utter-project/mHuBERT-147
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: mHuBERT-147-upper-sorbian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: hsb
          split: validation
          args: hsb
        metrics:
          - name: Wer
            type: wer
            value: 1

Visualize in Weights & Biases

mHuBERT-147-upper-sorbian

This model is a fine-tuned version of utter-project/mHuBERT-147 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3582
  • Wer: 1.0
  • Cer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
15.5448 3.9216 100 16.7511 1.0 2.0768
10.1433 7.8431 200 10.5841 1.0 1.0
8.264 11.7647 300 8.8218 1.0 1.0
7.9924 15.6863 400 8.2091 1.0 1.0
7.1304 19.6078 500 7.5249 1.0 1.0
6.2453 23.5294 600 6.8211 1.0 1.0
6.2833 27.4510 700 6.1921 1.0 1.0
5.3658 31.3725 800 5.6396 1.0 1.0
4.8314 35.2941 900 5.1645 1.0 1.0
4.8285 39.2157 1000 4.7647 1.0 1.0
4.2474 43.1373 1100 4.4360 1.0 1.0
3.9898 47.0588 1200 4.1735 1.0 1.0
3.8997 50.9804 1300 3.9678 1.0 1.0
3.7723 54.9020 1400 3.8085 1.0 1.0
3.6148 58.8235 1500 3.6879 1.0 1.0
3.4969 62.7451 1600 3.5966 1.0 1.0
3.5233 66.6667 1700 3.5286 1.0 1.0
3.4324 70.5882 1800 3.4771 1.0 1.0
3.393 74.5098 1900 3.4387 1.0 1.0
3.3967 78.4314 2000 3.4102 1.0 1.0
3.3846 82.3529 2100 3.3891 1.0 1.0
3.3431 86.2745 2200 3.3746 1.0 1.0
3.3601 90.1961 2300 3.3653 1.0 1.0
3.3545 94.1176 2400 3.3599 1.0 1.0
3.3114 98.0392 2500 3.3582 1.0 1.0

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1