Badr Abdullah
Model save
16c10c6 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: xls-r-300-cv17-bulgarian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: bg
          split: validation
          args: bg
        metrics:
          - name: Wer
            type: wer
            value: 0.2967878948765596

Visualize in Weights & Biases

xls-r-300-cv17-bulgarian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4329
  • Wer: 0.2968
  • Cer: 0.0726

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
4.0388 0.6579 100 4.1422 1.0 1.0
3.047 1.3158 200 3.0730 1.0 1.0
2.7349 1.9737 300 2.7601 0.9939 0.9946
0.6047 2.6316 400 0.6984 0.7954 0.1942
0.3868 3.2895 500 0.5550 0.5994 0.1519
0.3423 3.9474 600 0.4548 0.4804 0.1195
0.1942 4.6053 700 0.3973 0.4277 0.1034
0.1754 5.2632 800 0.4166 0.4391 0.1055
0.1734 5.9211 900 0.4146 0.4195 0.1018
0.1089 6.5789 1000 0.3859 0.3867 0.0937
0.233 7.2368 1100 0.4183 0.4054 0.1005
0.1519 7.8947 1200 0.4459 0.4151 0.1030
0.1176 8.5526 1300 0.4026 0.3845 0.0937
0.0997 9.2105 1400 0.3849 0.3590 0.0869
0.1266 9.8684 1500 0.4281 0.3781 0.0947
0.0945 10.5263 1600 0.4471 0.3983 0.0979
0.0575 11.1842 1700 0.4290 0.3660 0.0897
0.0854 11.8421 1800 0.4258 0.3749 0.0938
0.0558 12.5 1900 0.4242 0.3644 0.0907
0.0774 13.1579 2000 0.4339 0.3616 0.0888
0.0397 13.8158 2100 0.4155 0.3581 0.0882
0.0603 14.4737 2200 0.4681 0.3737 0.0943
0.0723 15.1316 2300 0.4446 0.3560 0.0875
0.0746 15.7895 2400 0.4430 0.3573 0.0889
0.0727 16.4474 2500 0.4549 0.3470 0.0870
0.0458 17.1053 2600 0.4581 0.3520 0.0873
0.0694 17.7632 2700 0.4414 0.3575 0.0896
0.0462 18.4211 2800 0.4235 0.3261 0.0802
0.0539 19.0789 2900 0.4496 0.3329 0.0810
0.0368 19.7368 3000 0.4043 0.3406 0.0846
0.0347 20.3947 3100 0.4367 0.3225 0.0789
0.019 21.0526 3200 0.4487 0.3272 0.0801
0.0361 21.7105 3300 0.4272 0.3241 0.0785
0.0475 22.3684 3400 0.4324 0.3191 0.0781
0.0341 23.0263 3500 0.4564 0.3398 0.0847
0.0454 23.6842 3600 0.4415 0.3188 0.0789
0.0346 24.3421 3700 0.4187 0.3072 0.0751
0.1315 25.0 3800 0.4480 0.3124 0.0765
0.0663 25.6579 3900 0.4488 0.3151 0.0779
0.0225 26.3158 4000 0.4372 0.3006 0.0739
0.0382 26.9737 4100 0.4164 0.2987 0.0730
0.0194 27.6316 4200 0.4190 0.2942 0.0718
0.0101 28.2895 4300 0.4328 0.2960 0.0726
0.0224 28.9474 4400 0.4302 0.2944 0.0720
0.0174 29.6053 4500 0.4329 0.2968 0.0726

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1