Badr Abdullah
Upload tokenizer
d44a5f1 verified
|
raw
history blame
4.29 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: xls-r-300m-hbs-phoneme-unfrozen-batch16
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: hsb
          split: test
          args: hsb
        metrics:
          - type: wer
            value: 0.4111996251171509
            name: Wer

Visualize in Weights & Biases

xls-r-300m-hbs-phoneme-unfrozen-batch16

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7105
  • Wer: 0.4112
  • Cer: 0.0948

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.6184 3.2258 100 3.4215 1.0 1.0
3.2927 6.4516 200 3.2247 1.0 1.0
3.2291 9.6774 300 3.2021 1.0 1.0000
1.4844 12.9032 400 1.3507 0.9857 0.2837
0.4136 16.1290 500 0.6982 0.6567 0.1608
0.2346 19.3548 600 0.6496 0.5956 0.1466
0.1401 22.5806 700 0.6680 0.5565 0.1314
0.1535 25.8065 800 0.6597 0.5026 0.1190
0.1165 29.0323 900 0.7085 0.5112 0.1224
0.076 32.2581 1000 0.7359 0.5026 0.1195
0.083 35.4839 1100 0.7144 0.4991 0.1205
0.0985 38.7097 1200 0.6907 0.4756 0.1120
0.052 41.9355 1300 0.6806 0.4700 0.1105
0.0347 45.1613 1400 0.7097 0.4588 0.1091
0.0432 48.3871 1500 0.7086 0.4649 0.1093
0.0626 51.6129 1600 0.6947 0.4393 0.1029
0.0474 54.8387 1700 0.6915 0.4468 0.1058
0.057 58.0645 1800 0.7068 0.4358 0.1020
0.0373 61.2903 1900 0.7140 0.4419 0.1037
0.0994 64.5161 2000 0.6966 0.4208 0.0987
0.0503 67.7419 2100 0.6997 0.4306 0.0988
0.0418 70.9677 2200 0.7105 0.4353 0.1006
0.036 74.1935 2300 0.7320 0.4356 0.1024
0.0171 77.4194 2400 0.7132 0.4257 0.0994
0.0234 80.6452 2500 0.7059 0.4171 0.0967
0.0335 83.8710 2600 0.7449 0.4140 0.0973
0.0288 87.0968 2700 0.7028 0.4157 0.0964
0.0344 90.3226 2800 0.7181 0.4112 0.0960
0.0298 93.5484 2900 0.7150 0.4105 0.0951
0.0532 96.7742 3000 0.7164 0.4119 0.0950
0.0058 100.0 3100 0.7105 0.4112 0.0948

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1