metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: xls-r-300m-hbs-phoneme-unfrozen-batch16
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: hsb
split: test
args: hsb
metrics:
- name: Wer
type: wer
value: 0.5337394564198688
xls-r-300m-hbs-phoneme-unfrozen-batch16
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.9205
- Wer: 0.5337
- Cer: 0.1244
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
4.0877 | 3.2258 | 100 | 3.7799 | 1.0 | 1.0 |
3.2643 | 6.4516 | 200 | 3.2338 | 1.0 | 1.0 |
3.2182 | 9.6774 | 300 | 3.1963 | 1.0 | 1.0 |
0.8009 | 12.9032 | 400 | 0.9289 | 0.8240 | 0.2193 |
0.2664 | 16.1290 | 500 | 0.8523 | 0.7381 | 0.1855 |
0.1359 | 19.3548 | 600 | 0.8465 | 0.6757 | 0.1676 |
0.1022 | 22.5806 | 700 | 0.8537 | 0.6603 | 0.1656 |
0.0641 | 25.8065 | 800 | 0.8821 | 0.6664 | 0.1620 |
0.0565 | 29.0323 | 900 | 0.9185 | 0.6610 | 0.1608 |
0.068 | 32.2581 | 1000 | 0.8839 | 0.6286 | 0.1513 |
0.0556 | 35.4839 | 1100 | 0.8898 | 0.6125 | 0.1479 |
0.0457 | 38.7097 | 1200 | 0.8840 | 0.6204 | 0.1448 |
0.0439 | 41.9355 | 1300 | 0.9207 | 0.6249 | 0.1490 |
0.0296 | 45.1613 | 1400 | 0.9572 | 0.6246 | 0.1510 |
0.0461 | 48.3871 | 1500 | 0.8875 | 0.5918 | 0.1395 |
0.0419 | 51.6129 | 1600 | 0.8967 | 0.5846 | 0.1384 |
0.0333 | 54.8387 | 1700 | 0.9827 | 0.5951 | 0.1420 |
0.0318 | 58.0645 | 1800 | 0.9055 | 0.5733 | 0.1364 |
0.0238 | 61.2903 | 1900 | 0.9497 | 0.5696 | 0.1363 |
0.0257 | 64.5161 | 2000 | 0.9268 | 0.5590 | 0.1330 |
0.0266 | 67.7419 | 2100 | 0.9374 | 0.5703 | 0.1351 |
0.0292 | 70.9677 | 2200 | 0.9304 | 0.5754 | 0.1352 |
0.0288 | 74.1935 | 2300 | 0.9419 | 0.5649 | 0.1334 |
0.0125 | 77.4194 | 2400 | 0.9625 | 0.5581 | 0.1335 |
0.0241 | 80.6452 | 2500 | 0.9449 | 0.5569 | 0.1313 |
0.0217 | 83.8710 | 2600 | 0.9315 | 0.5504 | 0.1292 |
0.0136 | 87.0968 | 2700 | 0.9079 | 0.5373 | 0.1257 |
0.0203 | 90.3226 | 2800 | 0.8935 | 0.5373 | 0.1241 |
0.0166 | 93.5484 | 2900 | 0.9169 | 0.5354 | 0.1239 |
0.0114 | 96.7742 | 3000 | 0.9245 | 0.5323 | 0.1240 |
0.011 | 100.0 | 3100 | 0.9205 | 0.5337 | 0.1244 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1