Badr Abdullah
Model save
fafd9da verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: xls-r-300m-hbs-phoneme-unfrozen-batch16
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: hsb
          split: test
          args: hsb
        metrics:
          - name: Wer
            type: wer
            value: 0.5337394564198688

Visualize in Weights & Biases

xls-r-300m-hbs-phoneme-unfrozen-batch16

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9205
  • Wer: 0.5337
  • Cer: 0.1244

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
4.0877 3.2258 100 3.7799 1.0 1.0
3.2643 6.4516 200 3.2338 1.0 1.0
3.2182 9.6774 300 3.1963 1.0 1.0
0.8009 12.9032 400 0.9289 0.8240 0.2193
0.2664 16.1290 500 0.8523 0.7381 0.1855
0.1359 19.3548 600 0.8465 0.6757 0.1676
0.1022 22.5806 700 0.8537 0.6603 0.1656
0.0641 25.8065 800 0.8821 0.6664 0.1620
0.0565 29.0323 900 0.9185 0.6610 0.1608
0.068 32.2581 1000 0.8839 0.6286 0.1513
0.0556 35.4839 1100 0.8898 0.6125 0.1479
0.0457 38.7097 1200 0.8840 0.6204 0.1448
0.0439 41.9355 1300 0.9207 0.6249 0.1490
0.0296 45.1613 1400 0.9572 0.6246 0.1510
0.0461 48.3871 1500 0.8875 0.5918 0.1395
0.0419 51.6129 1600 0.8967 0.5846 0.1384
0.0333 54.8387 1700 0.9827 0.5951 0.1420
0.0318 58.0645 1800 0.9055 0.5733 0.1364
0.0238 61.2903 1900 0.9497 0.5696 0.1363
0.0257 64.5161 2000 0.9268 0.5590 0.1330
0.0266 67.7419 2100 0.9374 0.5703 0.1351
0.0292 70.9677 2200 0.9304 0.5754 0.1352
0.0288 74.1935 2300 0.9419 0.5649 0.1334
0.0125 77.4194 2400 0.9625 0.5581 0.1335
0.0241 80.6452 2500 0.9449 0.5569 0.1313
0.0217 83.8710 2600 0.9315 0.5504 0.1292
0.0136 87.0968 2700 0.9079 0.5373 0.1257
0.0203 90.3226 2800 0.8935 0.5373 0.1241
0.0166 93.5484 2900 0.9169 0.5354 0.1239
0.0114 96.7742 3000 0.9245 0.5323 0.1240
0.011 100.0 3100 0.9205 0.5337 0.1244

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1