metadata
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- barc0/induction_heavy_100k_jsonl
- barc0/induction_heavy_suggestfunction_100k_jsonl
- >-
barc0/induction_100k-gpt4-description-gpt4omini-code_generated_problems_messages_format_0.3
- >-
barc0/induction_100k_gpt4o-mini_generated_problems_seed100.jsonl_messages_format_0.3
model-index:
- name: l3.1-8b-inst-fft-induction-barc-heavy-200k-old-200k-lr1e-5-ep2
results: []
l3.1-8b-inst-fft-induction-barc-heavy-200k-old-200k-lr1e-5-ep2
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the barc0/induction_heavy_100k_jsonl, the barc0/induction_heavy_suggestfunction_100k_jsonl, the barc0/induction_100k-gpt4-description-gpt4omini-code_generated_problems_messages_format_0.3 and the barc0/induction_100k_gpt4o-mini_generated_problems_seed100.jsonl_messages_format_0.3 datasets. It achieves the following results on the evaluation set:
- Loss: 0.2709
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.2817 | 1.0 | 2995 | 0.2818 |
0.2432 | 2.0 | 5990 | 0.2709 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.1+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1