layoutlm-funsd / README.md
barryjdevereux's picture
End of training
d28f9b8
metadata
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6559
  • Answer: {'precision': 0.7160220994475138, 'recall': 0.8009888751545118, 'f1': 0.7561260210035006, 'number': 809}
  • Header: {'precision': 0.31932773109243695, 'recall': 0.31932773109243695, 'f1': 0.31932773109243695, 'number': 119}
  • Question: {'precision': 0.7674216027874564, 'recall': 0.8272300469483568, 'f1': 0.7962042476276546, 'number': 1065}
  • Overall Precision: 0.7215
  • Overall Recall: 0.7863
  • Overall F1: 0.7525
  • Overall Accuracy: 0.8165

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8319 1.0 10 1.6114 {'precision': 0.02668213457076566, 'recall': 0.02843016069221261, 'f1': 0.02752842609216038, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.21885521885521886, 'recall': 0.18309859154929578, 'f1': 0.19938650306748468, 'number': 1065} 0.1244 0.1094 0.1164 0.3478
1.4535 2.0 20 1.2624 {'precision': 0.2141119221411192, 'recall': 0.21755253399258342, 'f1': 0.2158185162477008, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.45236250968241676, 'recall': 0.5483568075117371, 'f1': 0.4957555178268252, 'number': 1065} 0.3597 0.3813 0.3702 0.5768
1.099 3.0 30 0.9496 {'precision': 0.46866840731070497, 'recall': 0.4437577255871446, 'f1': 0.4558730158730159, 'number': 809} {'precision': 0.05405405405405406, 'recall': 0.01680672268907563, 'f1': 0.02564102564102564, 'number': 119} {'precision': 0.6174957118353345, 'recall': 0.676056338028169, 'f1': 0.6454504706409682, 'number': 1065} 0.5490 0.5424 0.5457 0.7045
0.8218 4.0 40 0.7695 {'precision': 0.5814606741573034, 'recall': 0.7676143386897404, 'f1': 0.6616941928609482, 'number': 809} {'precision': 0.1935483870967742, 'recall': 0.10084033613445378, 'f1': 0.13259668508287292, 'number': 119} {'precision': 0.6691983122362869, 'recall': 0.7446009389671362, 'f1': 0.7048888888888889, 'number': 1065} 0.6160 0.7155 0.6620 0.7620
0.6633 5.0 50 0.7008 {'precision': 0.6237006237006237, 'recall': 0.7416563658838071, 'f1': 0.6775832862789385, 'number': 809} {'precision': 0.2571428571428571, 'recall': 0.15126050420168066, 'f1': 0.19047619047619044, 'number': 119} {'precision': 0.7088055797733217, 'recall': 0.7633802816901408, 'f1': 0.7350813743218807, 'number': 1065} 0.6567 0.7180 0.6860 0.7819
0.5651 6.0 60 0.6659 {'precision': 0.6533192834562698, 'recall': 0.7663782447466008, 'f1': 0.7053469852104665, 'number': 809} {'precision': 0.2564102564102564, 'recall': 0.25210084033613445, 'f1': 0.2542372881355932, 'number': 119} {'precision': 0.7251655629139073, 'recall': 0.8225352112676056, 'f1': 0.7707875054993402, 'number': 1065} 0.6711 0.7657 0.7153 0.7976
0.4862 7.0 70 0.6514 {'precision': 0.6496815286624203, 'recall': 0.7564894932014833, 'f1': 0.6990291262135921, 'number': 809} {'precision': 0.30927835051546393, 'recall': 0.25210084033613445, 'f1': 0.2777777777777778, 'number': 119} {'precision': 0.7352206494587843, 'recall': 0.8291079812206573, 'f1': 0.7793468667255075, 'number': 1065} 0.6808 0.7652 0.7205 0.8038
0.4421 8.0 80 0.6342 {'precision': 0.6720085470085471, 'recall': 0.7775030902348579, 'f1': 0.7209169054441262, 'number': 809} {'precision': 0.3017241379310345, 'recall': 0.29411764705882354, 'f1': 0.29787234042553185, 'number': 119} {'precision': 0.7461928934010152, 'recall': 0.828169014084507, 'f1': 0.7850467289719626, 'number': 1065} 0.6920 0.7757 0.7315 0.8087
0.3898 9.0 90 0.6485 {'precision': 0.7045203969128997, 'recall': 0.7898640296662547, 'f1': 0.7447552447552448, 'number': 809} {'precision': 0.32038834951456313, 'recall': 0.2773109243697479, 'f1': 0.29729729729729737, 'number': 119} {'precision': 0.7669902912621359, 'recall': 0.815962441314554, 'f1': 0.7907188353048227, 'number': 1065} 0.7191 0.7732 0.7452 0.8099
0.3531 10.0 100 0.6380 {'precision': 0.7058177826564215, 'recall': 0.7948084054388134, 'f1': 0.7476744186046511, 'number': 809} {'precision': 0.33980582524271846, 'recall': 0.29411764705882354, 'f1': 0.31531531531531537, 'number': 119} {'precision': 0.7579672695951766, 'recall': 0.8262910798122066, 'f1': 0.7906558849955077, 'number': 1065} 0.7163 0.7817 0.7476 0.8155
0.3226 11.0 110 0.6484 {'precision': 0.72, 'recall': 0.8009888751545118, 'f1': 0.7583382094792276, 'number': 809} {'precision': 0.2962962962962963, 'recall': 0.2689075630252101, 'f1': 0.28193832599118945, 'number': 119} {'precision': 0.7819481680071493, 'recall': 0.8215962441314554, 'f1': 0.8012820512820512, 'number': 1065} 0.7311 0.7802 0.7549 0.8171
0.3066 12.0 120 0.6399 {'precision': 0.7007616974972797, 'recall': 0.796044499381953, 'f1': 0.7453703703703702, 'number': 809} {'precision': 0.3181818181818182, 'recall': 0.29411764705882354, 'f1': 0.3056768558951965, 'number': 119} {'precision': 0.7610544217687075, 'recall': 0.8403755868544601, 'f1': 0.7987505577867025, 'number': 1065} 0.7138 0.7898 0.7499 0.8195
0.2932 13.0 130 0.6628 {'precision': 0.7155555555555555, 'recall': 0.796044499381953, 'f1': 0.7536571094207138, 'number': 809} {'precision': 0.288, 'recall': 0.3025210084033613, 'f1': 0.2950819672131147, 'number': 119} {'precision': 0.7783783783783784, 'recall': 0.8112676056338028, 'f1': 0.7944827586206896, 'number': 1065} 0.7232 0.7747 0.7481 0.8163
0.2739 14.0 140 0.6550 {'precision': 0.7190265486725663, 'recall': 0.8034610630407911, 'f1': 0.7589025102159953, 'number': 809} {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119} {'precision': 0.766695576756288, 'recall': 0.8300469483568075, 'f1': 0.7971145175834085, 'number': 1065} 0.7232 0.7878 0.7541 0.8173
0.2715 15.0 150 0.6559 {'precision': 0.7160220994475138, 'recall': 0.8009888751545118, 'f1': 0.7561260210035006, 'number': 809} {'precision': 0.31932773109243695, 'recall': 0.31932773109243695, 'f1': 0.31932773109243695, 'number': 119} {'precision': 0.7674216027874564, 'recall': 0.8272300469483568, 'f1': 0.7962042476276546, 'number': 1065} 0.7215 0.7863 0.7525 0.8165

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1