bawolf's picture
Update README.md
7ff52a0 verified
|
raw
history blame
3.69 kB
---
license: mit
language:
- en
base_model:
- openai/clip-vit-large-patch14
pipeline_tag: video-classification
tags:
- dance
- vision
- breaking
---
# CLIP-Based Break Dance Move Classifier
A deep learning model for classifying break dance moves using CLIP (Contrastive Language-Image Pre-Training) embeddings. The model is fine-tuned on break dance videos to classify different power moves including windmills, halos, swipes, and baby mills.
## Features
- Video-based classification using CLIP embeddings
- Multi-frame temporal analysis
- Configurable frame sampling and data augmentation
- Real-time inference using Cog
- Misclassification analysis tools
- Hyperparameter tuning support
## Setup
```bash
# Install dependencies
pip install -r requirements.txt
# Install Cog (if not already installed)
curl -o /usr/local/bin/cog -L https://github.com/replicate/cog/releases/latest/download/cog_`uname -s`_`uname -m`
chmod +x /usr/local/bin/cog
```
## Cog
download the weights
```bash
gdown https://drive.google.com/uc?id=1Gn3UdoKffKJwz84GnGx-WMFTwZuvDsuf -O ./checkpoints/
```
build the image
```bash
cog build --separate-weights
```
push a new image
```bash
cog push
```
## Training
download the training data
```bash
gdown https://drive.google.com/uc?id=11M6nSuSuvoU2wpcV_-6KFqCzEMGP75q6?usp=drive_link -O ./data/
```
```bash
# Run training with default configuration
python scripts/train.py
# Run hyperparameter tuning
python scripts/hyperparameter_tuning.py
```
## Inference
```bash
# Using Cog for inference
cog predict -i video=@path/to/your/video.mp4
# Using standard Python script
python scripts/inference.py --video path/to/your/video.mp4
```
## Analysis
```bash
# Generate misclassification report
python scripts/visualization/miscalculations_report.py
# Visualize model performance
python scripts/visualization/visualize.py
```
## Project Structure
```
clip/
β”œβ”€β”€ src/ # Source code
β”‚ β”œβ”€β”€ data/ # Dataset and data processing
β”‚ β”œβ”€β”€ models/ # Model architecture
β”‚ └── utils/ # Utility functions
β”œβ”€β”€ scripts/ # Training and inference scripts
β”‚ └── visualization/ # Visualization tools
β”œβ”€β”€ config/ # Configuration files
β”œβ”€β”€ runs/ # Training runs and checkpoints
β”œβ”€β”€ cog.yaml # Cog configuration
└── requirements.txt # Python dependencies
```
## Training Data
To run training on your own, you can find the training data [here](https://drive.google.com/drive/folders/11M6nSuSuvoU2wpcV_-6KFqCzEMGP75q6?usp=drive_link) and put it in the a directory at the root of the project called `./data`.
## Checkpoints
To run predictions with cog or locally on an existing checkpoint, you can find a checkpoint and configuration files [here](https://drive.google.com/drive/folders/1Gn3UdoKffKJwz84GnGx-WMFTwZuvDsuf?usp=sharing) and put them in the a directory at the root of the project called `./checkpoints`.
## Model Architecture
- Base: CLIP ViT-Large/14
- Custom temporal pooling layer
- Fine-tuned vision encoder (last 3 layers)
- Output: 4-class classifier
## License
MIT License
Copyright (c) 2024 Bryant Wolf
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{clip-breakdance-classifier,
author = {Bryant Wolf},
title = {CLIP-Based Break Dance Move Classifier},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face Model Hub},
howpublished = {\url{https://github.com/bawolf/breaking_vision_clip_cog}}
}
```