just upload through git
Browse files- .dockerignore.cog.bak +43 -0
- .envrc +1 -1
- .gitignore +1 -0
- .sample.envrc +1 -0
- scripts/upload_to_hub.py +0 -44
.dockerignore.cog.bak
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# generated by replicate/cog
|
2 |
+
__pycache__
|
3 |
+
*.pyc
|
4 |
+
*.pyo
|
5 |
+
*.pyd
|
6 |
+
.Python
|
7 |
+
env
|
8 |
+
pip-log.txt
|
9 |
+
pip-delete-this-directory.txt
|
10 |
+
.tox
|
11 |
+
.coverage
|
12 |
+
.coverage.*
|
13 |
+
.cache
|
14 |
+
nosetests.xml
|
15 |
+
coverage.xml
|
16 |
+
*.cover
|
17 |
+
*.log
|
18 |
+
.git
|
19 |
+
.mypy_cache
|
20 |
+
.pytest_cache
|
21 |
+
.hypothesis
|
22 |
+
|
23 |
+
# generated by replicate/cog
|
24 |
+
__pycache__
|
25 |
+
*.pyc
|
26 |
+
*.pyo
|
27 |
+
*.pyd
|
28 |
+
.Python
|
29 |
+
env
|
30 |
+
pip-log.txt
|
31 |
+
pip-delete-this-directory.txt
|
32 |
+
.tox
|
33 |
+
.coverage
|
34 |
+
.coverage.*
|
35 |
+
.cache
|
36 |
+
nosetests.xml
|
37 |
+
coverage.xml
|
38 |
+
*.cover
|
39 |
+
*.log
|
40 |
+
.git
|
41 |
+
.mypy_cache
|
42 |
+
.pytest_cache
|
43 |
+
.hypothesis
|
.envrc
CHANGED
@@ -1 +1 @@
|
|
1 |
-
HF_USERNAME=bawolf
|
|
|
1 |
+
export HF_USERNAME=bawolf
|
.gitignore
CHANGED
@@ -25,6 +25,7 @@ wheels/
|
|
25 |
venv/
|
26 |
ENV/
|
27 |
.env
|
|
|
28 |
|
29 |
# IDE
|
30 |
.idea/
|
|
|
25 |
venv/
|
26 |
ENV/
|
27 |
.env
|
28 |
+
.envrc
|
29 |
|
30 |
# IDE
|
31 |
.idea/
|
.sample.envrc
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
export HF_USERNAME=bawolf
|
scripts/upload_to_hub.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
from transformers import CLIPProcessor
|
2 |
-
from huggingface_hub import HfApi
|
3 |
-
import os
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
import torch
|
6 |
-
from src.models.model import create_model
|
7 |
-
|
8 |
-
def upload_model_to_hub(hf_username):
|
9 |
-
# Initialize huggingface api
|
10 |
-
api = HfApi()
|
11 |
-
|
12 |
-
# Load your custom model
|
13 |
-
num_classes = 3 # windmills, halos, and swipes
|
14 |
-
model = create_model(num_classes, "openai/clip-vit-large-patch14")
|
15 |
-
|
16 |
-
# Load your trained weights
|
17 |
-
state_dict = torch.load("./checkpoints/model.pth", map_location="cpu")
|
18 |
-
model.load_state_dict(state_dict, strict=False)
|
19 |
-
|
20 |
-
# Get the processor from the base CLIP model
|
21 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
22 |
-
|
23 |
-
repo_id = f"{hf_username}/breaking-vision-clip-classifier"
|
24 |
-
|
25 |
-
# Save model configuration and architecture
|
26 |
-
config = {
|
27 |
-
"num_classes": num_classes,
|
28 |
-
"base_model": "openai/clip-vit-large-patch14",
|
29 |
-
"class_labels": ["windmill", "halo", "swipe"],
|
30 |
-
"model_type": "VariableLengthCLIP"
|
31 |
-
}
|
32 |
-
|
33 |
-
# Push to hub with config
|
34 |
-
model.push_to_hub(
|
35 |
-
repo_id,
|
36 |
-
config_dict=config,
|
37 |
-
commit_message="Upload custom CLIP-based dance classifier"
|
38 |
-
)
|
39 |
-
processor.push_to_hub(repo_id)
|
40 |
-
|
41 |
-
if __name__ == "__main__":
|
42 |
-
load_dotenv()
|
43 |
-
hf_username = os.getenv("HF_USERNAME")
|
44 |
-
upload_model_to_hub(hf_username)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|