metadata
language:
- mn
license: apache-2.0
tags:
- whisper-event
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: whisper-small-mn-1-bayartsogt
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: mn
split: test
args:
language: mn
metrics:
- name: Wer
type: wer
value: 46.68450950404195
whisper-small-mn-1
This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 mn dataset. It achieves the following results on the evaluation set:
- Loss: 0.4537
- Wer: 46.6845
- Cer: 16.1695
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.1121 | 4.26 | 1000 | 0.4537 | 46.6845 | 16.1695 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2