DeBERT_50K_steps / README.md
bdpc's picture
Saving best model of DeBERT_50K_steps to hub
3869221 verified
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: DeBERT_50K_steps
    results: []

DeBERT_50K_steps

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0169
  • Accuracy: 0.9941
  • Precision: 0.7649
  • Recall: 0.5670
  • F1: 0.6512
  • Hamming: 0.0059

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 50000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming
0.2014 0.02 2500 0.0451 0.9902 0.0 0.0 0.0 0.0098
0.0373 0.04 5000 0.0297 0.9913 0.6879 0.2003 0.3102 0.0087
0.0286 0.06 7500 0.0250 0.9921 0.6965 0.3329 0.4505 0.0079
0.0253 0.08 10000 0.0233 0.9925 0.7038 0.4010 0.5109 0.0075
0.0234 0.1 12500 0.0217 0.9928 0.7085 0.4382 0.5415 0.0072
0.0223 0.12 15000 0.0208 0.9930 0.7229 0.4559 0.5591 0.0070
0.0213 0.14 17500 0.0205 0.9931 0.7255 0.4696 0.5701 0.0069
0.0206 0.16 20000 0.0196 0.9933 0.7325 0.4990 0.5936 0.0067
0.0203 0.18 22500 0.0191 0.9935 0.7368 0.5125 0.6045 0.0065
0.0196 0.2 25000 0.0188 0.9935 0.7354 0.5209 0.6098 0.0065
0.0195 0.22 27500 0.0185 0.9936 0.7415 0.5335 0.6205 0.0064
0.019 0.24 30000 0.0183 0.9936 0.7437 0.5296 0.6186 0.0064
0.0189 0.26 32500 0.0180 0.9938 0.7585 0.5304 0.6243 0.0062
0.0187 0.28 35000 0.0178 0.9938 0.7630 0.5342 0.6284 0.0062
0.0184 0.3 37500 0.0175 0.9939 0.7626 0.5457 0.6362 0.0061
0.0182 0.32 40000 0.0174 0.9939 0.7621 0.5451 0.6356 0.0061
0.0179 0.34 42500 0.0172 0.9940 0.7594 0.5563 0.6422 0.0060
0.0178 0.36 45000 0.0171 0.9940 0.7553 0.5633 0.6453 0.0060
0.0177 0.38 47500 0.0170 0.9941 0.7623 0.5680 0.6510 0.0059
0.0175 0.4 50000 0.0169 0.9941 0.7649 0.5670 0.6512 0.0059

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.7.1
  • Tokenizers 0.14.1