metadata
base_model: allenai/scibert_scivocab_uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: SciBERT_25K_steps_bs64
results: []
SciBERT_25K_steps_bs64
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0177
- Accuracy: 0.9941
- Precision: 0.7990
- Recall: 0.5288
- F1: 0.6364
- Hamming: 0.0059
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 25000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming |
---|---|---|---|---|---|---|---|---|
0.0467 | 0.16 | 5000 | 0.0416 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 |
0.0236 | 0.32 | 10000 | 0.0223 | 0.9932 | 0.8192 | 0.3929 | 0.5311 | 0.0068 |
0.0198 | 0.47 | 15000 | 0.0190 | 0.9939 | 0.8015 | 0.4934 | 0.6108 | 0.0061 |
0.0185 | 0.63 | 20000 | 0.0180 | 0.9940 | 0.7974 | 0.5220 | 0.6310 | 0.0060 |
0.0181 | 0.79 | 25000 | 0.0177 | 0.9941 | 0.7990 | 0.5288 | 0.6364 | 0.0059 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.7.1
- Tokenizers 0.14.1