bdpc's picture
Saving best model of SciBERT_AsymmetricLoss_25K_bs64_P1_N1 to hub
8c5616d verified
|
raw
history blame
2.1 kB
metadata
base_model: allenai/scibert_scivocab_uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: SciBERT_AsymmetricLoss_25K_bs64_P1_N1
    results: []

SciBERT_AsymmetricLoss_25K_bs64_P1_N1

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 67.0896
  • Accuracy: 0.9945
  • Precision: 0.7586
  • Recall: 0.6438
  • F1: 0.6965
  • Hamming: 0.0055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 25000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming
83.6475 0.16 5000 79.3653 0.9938 0.7361 0.5667 0.6404 0.0062
75.8712 0.32 10000 72.7250 0.9942 0.7513 0.6068 0.6714 0.0058
72.4202 0.47 15000 69.4174 0.9944 0.7568 0.6237 0.6838 0.0056
70.0693 0.63 20000 67.8098 0.9945 0.7561 0.6385 0.6923 0.0055
68.9765 0.79 25000 67.0896 0.9945 0.7586 0.6438 0.6965 0.0055

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.7.1
  • Tokenizers 0.14.1