Edit model card

resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_simkd

This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4602
  • Accuracy: 0.769
  • Brier Loss: 0.3252
  • Nll: 2.1002
  • F1 Micro: 0.769
  • F1 Macro: 0.7667
  • Ece: 0.0388
  • Aurc: 0.0678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 250 1.0910 0.059 0.9372 6.6175 0.059 0.0236 0.0366 0.9408
1.0976 2.0 500 1.0013 0.0838 0.9335 4.2665 0.0838 0.0443 0.0391 0.9208
1.0976 3.0 750 0.9171 0.1335 0.9308 2.8791 0.1335 0.0985 0.0770 0.8928
0.9312 4.0 1000 0.8701 0.1822 0.9243 2.7464 0.1822 0.1497 0.1142 0.8582
0.9312 5.0 1250 0.8306 0.274 0.8635 5.8805 0.274 0.2059 0.1347 0.6733
0.8353 6.0 1500 0.7791 0.396 0.7897 5.0905 0.396 0.3620 0.1762 0.4569
0.8353 7.0 1750 0.7452 0.47 0.7200 4.3882 0.47 0.4357 0.1822 0.3485
0.7569 8.0 2000 0.7148 0.5635 0.6470 3.6418 0.5635 0.5444 0.2022 0.2564
0.7569 9.0 2250 0.6847 0.6092 0.5626 3.0490 0.6092 0.5904 0.1508 0.1932
0.6953 10.0 2500 0.6552 0.648 0.5117 2.7913 0.648 0.6309 0.1312 0.1622
0.6953 11.0 2750 0.6369 0.662 0.4778 2.6400 0.662 0.6468 0.0959 0.1471
0.6357 12.0 3000 0.6074 0.6863 0.4436 2.4974 0.6863 0.6724 0.0734 0.1274
0.6357 13.0 3250 0.5915 0.6975 0.4226 2.4214 0.6975 0.6843 0.0607 0.1173
0.5943 14.0 3500 0.5811 0.7055 0.4080 2.3606 0.7055 0.6923 0.0487 0.1093
0.5943 15.0 3750 0.5694 0.7177 0.3947 2.2689 0.7178 0.7087 0.0553 0.1016
0.5665 16.0 4000 0.5555 0.7225 0.3866 2.2797 0.7225 0.7130 0.0394 0.0981
0.5665 17.0 4250 0.5502 0.725 0.3821 2.2616 0.7250 0.7166 0.0441 0.0957
0.5446 18.0 4500 0.5425 0.7345 0.3704 2.1992 0.7345 0.7277 0.0401 0.0893
0.5446 19.0 4750 0.5325 0.731 0.3670 2.1856 0.731 0.7257 0.0401 0.0872
0.5268 20.0 5000 0.5272 0.738 0.3661 2.2345 0.738 0.7335 0.0467 0.0865
0.5268 21.0 5250 0.5199 0.745 0.3582 2.1676 0.745 0.7407 0.0388 0.0827
0.5107 22.0 5500 0.5146 0.748 0.3530 2.1726 0.748 0.7446 0.0417 0.0802
0.5107 23.0 5750 0.5101 0.7482 0.3516 2.1670 0.7482 0.7445 0.0398 0.0799
0.4973 24.0 6000 0.5076 0.7455 0.3533 2.1814 0.7455 0.7431 0.0396 0.0807
0.4973 25.0 6250 0.4971 0.7512 0.3476 2.1618 0.7513 0.7469 0.0414 0.0780
0.484 26.0 6500 0.4934 0.753 0.3464 2.1725 0.753 0.7497 0.0473 0.0780
0.484 27.0 6750 0.4916 0.756 0.3415 2.1408 0.756 0.7527 0.0480 0.0753
0.4709 28.0 7000 0.4886 0.7582 0.3405 2.1415 0.7582 0.7547 0.0410 0.0746
0.4709 29.0 7250 0.4844 0.7582 0.3377 2.1252 0.7582 0.7556 0.0483 0.0742
0.4617 30.0 7500 0.4831 0.757 0.3372 2.1383 0.757 0.7540 0.0425 0.0731
0.4617 31.0 7750 0.4781 0.759 0.3344 2.1035 0.7590 0.7572 0.0404 0.0718
0.4529 32.0 8000 0.4794 0.7562 0.3375 2.1457 0.7562 0.7545 0.0385 0.0731
0.4529 33.0 8250 0.4777 0.7625 0.3336 2.0834 0.7625 0.7607 0.0433 0.0717
0.4462 34.0 8500 0.4730 0.7598 0.3328 2.1058 0.7598 0.7566 0.0496 0.0716
0.4462 35.0 8750 0.4730 0.761 0.3324 2.0874 0.761 0.7600 0.0461 0.0712
0.4404 36.0 9000 0.4692 0.7635 0.3309 2.0914 0.7635 0.7616 0.0481 0.0703
0.4404 37.0 9250 0.4691 0.7618 0.3298 2.0866 0.7618 0.7598 0.0457 0.0703
0.4351 38.0 9500 0.4666 0.762 0.3294 2.0963 0.762 0.7593 0.0428 0.0700
0.4351 39.0 9750 0.4639 0.7668 0.3265 2.1028 0.7668 0.7652 0.0453 0.0688
0.4309 40.0 10000 0.4627 0.7675 0.3287 2.0981 0.7675 0.7658 0.0449 0.0694
0.4309 41.0 10250 0.4634 0.765 0.3264 2.1151 0.765 0.7631 0.0441 0.0684
0.4269 42.0 10500 0.4626 0.7658 0.3260 2.0977 0.7658 0.7644 0.0414 0.0684
0.4269 43.0 10750 0.4609 0.7672 0.3259 2.0944 0.7672 0.7656 0.0420 0.0681
0.4248 44.0 11000 0.4616 0.7662 0.3253 2.0942 0.7663 0.7652 0.0458 0.0678
0.4248 45.0 11250 0.4605 0.7658 0.3258 2.1447 0.7658 0.7629 0.0408 0.0678
0.4233 46.0 11500 0.4604 0.7662 0.3266 2.1007 0.7663 0.7640 0.0493 0.0686
0.4233 47.0 11750 0.4601 0.7652 0.3252 2.0893 0.7652 0.7633 0.0463 0.0684
0.4221 48.0 12000 0.4600 0.7645 0.3255 2.0695 0.7645 0.7629 0.0472 0.0683
0.4221 49.0 12250 0.4605 0.7662 0.3257 2.0778 0.7663 0.7640 0.0425 0.0682
0.4211 50.0 12500 0.4602 0.769 0.3252 2.1002 0.769 0.7667 0.0388 0.0678

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bdpc/resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_simkd

Finetuned
(124)
this model