vit-base_rvl_cdip-N1K_aAURC_32
This model is a fine-tuned version of jordyvl/vit-base_rvl-cdip on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5215
- Accuracy: 0.888
- Brier Loss: 0.1918
- Nll: 0.9026
- F1 Micro: 0.888
- F1 Macro: 0.8883
- Ece: 0.0880
- Aurc: 0.0205
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
0.1629 | 1.0 | 500 | 0.3779 | 0.8875 | 0.1721 | 1.1899 | 0.8875 | 0.8877 | 0.0531 | 0.0201 |
0.1234 | 2.0 | 1000 | 0.4074 | 0.8868 | 0.1790 | 1.1333 | 0.8868 | 0.8874 | 0.0647 | 0.0213 |
0.0616 | 3.0 | 1500 | 0.4257 | 0.888 | 0.1813 | 1.0677 | 0.888 | 0.8879 | 0.0695 | 0.0201 |
0.0303 | 4.0 | 2000 | 0.4595 | 0.885 | 0.1869 | 1.0256 | 0.885 | 0.8856 | 0.0776 | 0.0222 |
0.0133 | 5.0 | 2500 | 0.4902 | 0.8848 | 0.1922 | 0.9983 | 0.8848 | 0.8849 | 0.0831 | 0.0228 |
0.0083 | 6.0 | 3000 | 0.4941 | 0.8862 | 0.1903 | 0.9464 | 0.8862 | 0.8868 | 0.0850 | 0.0211 |
0.0051 | 7.0 | 3500 | 0.5116 | 0.8875 | 0.1928 | 0.9118 | 0.8875 | 0.8873 | 0.0875 | 0.0207 |
0.0043 | 8.0 | 4000 | 0.5154 | 0.8882 | 0.1910 | 0.9138 | 0.8882 | 0.8887 | 0.0864 | 0.0205 |
0.0041 | 9.0 | 4500 | 0.5221 | 0.8865 | 0.1924 | 0.9101 | 0.8865 | 0.8868 | 0.0896 | 0.0206 |
0.0037 | 10.0 | 5000 | 0.5215 | 0.888 | 0.1918 | 0.9026 | 0.888 | 0.8883 | 0.0880 | 0.0205 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.2.0.dev20231002
- Datasets 2.7.1
- Tokenizers 0.13.3
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bdpc/vit-base_rvl_cdip-N1K_aAURC_32
Base model
jordyvl/vit-base_rvl-cdip