File size: 15,422 Bytes
b48abc0 e1f4033 b48abc0 e1f4033 b48abc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
"""
Processor class for TaiVisionLM.
"""
import transformers
import logging
from typing import List, Optional, Union
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, is_valid_image
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils import (
AddedToken,
PaddingStrategy,
PreTokenizedInput,
TextInput,
TruncationStrategy,
)
from transformers.utils import TensorType
from .configuration_taivisionlm import TaiVisionLMConfig
logger = logging.getLogger(__name__)
IMAGE_TOKEN = "<image>"
# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
# Copied from transformers.models.paligemma.processing_paligemma._is_str_or_image
def _is_str_or_image(elem):
return isinstance(elem, (str)) or is_image_or_image_url(elem)
def build_string_from_input(image_seq_len, image_token):
"""
Builds a string from the input prompt and image tokens.
For example, for the call:
build_string_from_input(
image_seq_len=3,
image_token="<im>",
)
The output will be:
"<im><im><im>"
Args:
image_seq_len (`int`): The length of the image sequence.
image_token (`str`): The image token.
"""
return f"{image_token * image_seq_len}"
class TaiVisionProcessor(ProcessorMixin):
r"""
Constructs a TraVision processor which wraps a SigLIP image processor and a GPT2 tokenizer into a single processor.
[`TaiVisionProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~TaiVisionProcessor.__call__`] and [`~TaiVisionProcessor.decode`] for more information.
Args:
image_processor ([`SiglipImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "SiglipImageProcessor"
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
def __init__(
self,
image_processor=None,
tokenizer=None,
chat_template=None,
**kwargs,
):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
if not hasattr(image_processor, "image_seq_length"):
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
self.image_seq_length = image_processor.image_seq_length
image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True)
tokens_to_add = {"additional_special_tokens": [image_token]}
tokenizer.add_special_tokens(tokens_to_add)
self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
tokenizer.add_bos_token = False
tokenizer.add_eos_token = False
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
prompts: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
do_resize: bool = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
input_data_format: Optional[
Union[str, "ChannelDimension"] # noqa: F821
] = None,
resample: "PILImageResampling" = None, # noqa: F821
do_convert_rgb: bool = None,
do_thumbnail: bool = None,
do_align_long_axis: bool = None,
do_rescale: bool = None,
labels: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to GPT2TokenizerFast's [`~GPT2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
The usage for TraVisionLM fine-tuning preparation follows a standard 4D causal mask where only the prompt and label tokens
are attended in an auto-regressive manner. The label in `text` are to be passed separately to the __call__ function and
will be placed after the prompt, which is the instruction to steer the model generation.
Args:
prompts (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are \image height and width.
tokenize_newline_separately (`bool`, defaults to `False`):
Adds a separately tokenized '\n' at the end of the prompt.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
labels (`str`, `List[str]`, `List[List[str]]`):
The label or batch of labels to be encoded. Only necessary for training.
text (`str`, `List[str]`, `List[List[str]]`):
The text or batch of text to be encoded. If provided, the prompt and label should be
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `label`
is provided, the `input_ids` will also contain the label input ids.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **labels** -- Labels compatible with training if `label` is not None
"""
# return_token_type_ids = True if labels is not None else False
return_token_type_ids = True
if images is None:
raise ValueError("`images` are expected as arguments to a `TraVisionProcessor` instance.")
images = [images] if not isinstance(images, list) else images
if prompts is None:
logger.warning_once(
"You are using TaiVisionLM without a text prefix. It will perform as a picture-captioning model."
)
prompts = "描述這張圖片" # default prompt if it is not provided as an argument
if len(images) != 1:
prompts = [prompts] * len(images)
if isinstance(prompts, List) and isinstance(images, List):
if len(images) < len(text):
raise ValueError(
f"Received {len(images)} images for {len(prompts)} prompts. Each prompt should be associated with an image."
)
if _is_str_or_image(prompts):
prompts = [prompts]
elif isinstance(prompts, list) and _is_str_or_image(prompts[0]):
pass
# add \n after image tokens
prompts = [f"\n<|user|>\n{prompt}{self.tokenizer.eos_token}\n" for prompt in prompts]
# TODO: tokenize the prompt twice, and check if the prompt is too long
prompt_length = [len(self.tokenizer.tokenize(prompt)) + self.image_seq_length for prompt in prompts]
if labels is not None:
if _is_str_or_image(labels):
labels = [labels] # convert it to list if it is a string
labels = [f"<|assistant|>\n{label}{self.tokenizer.eos_token}" for label in labels]
text = [f"{prompt}{label}" for prompt, label in zip(prompts, labels)]
else:
text = prompts
assert len(images) == len(text), "The number of images and text should be the same."
input_strings = [
build_string_from_input(
image_seq_len=self.image_seq_length,
image_token=IMAGE_TOKEN,
)
for _ in text
]
# this will do some image processing, like resizing, normalizing, etc.
pixel_values = self.image_processor(
images,
do_resize=do_resize,
do_normalize=do_normalize,
return_tensors=return_tensors,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
data_format=data_format,
resample=resample,
do_convert_rgb=do_convert_rgb,
)["pixel_values"]
if max_length is not None:
max_length += self.image_seq_length # max_length has to account for the image tokens
inputs = self.tokenizer(
input_strings,
text_pair=text,
return_tensors=return_tensors,
padding=padding,
max_length=max_length,
truncation=truncation,
return_token_type_ids=return_token_type_ids,
)
return_data = {**inputs, "pixel_values": pixel_values}
# we are doing training, so we need to return the labels
if labels is not None:
# fill the labels with -100 where we don't have to compute the loss
# mask the padding part
labels = inputs["input_ids"].masked_fill(inputs["attention_mask"] == 0, -100)
# mask the image + prompt part, so that we don't train the model to predict the image tokens
import torch
prompt_length_tensor = torch.tensor(prompt_length)
labels = labels.masked_fill(torch.arange(labels.size(1)).unsqueeze(0) < prompt_length_tensor.unsqueeze(1), -100)
return_data.update({"labels": labels})
return BatchFeature(data=return_data)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->GPT2
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GPT2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->GPT2
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GPT2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->TraVision
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
# if __name__ == '__main__':
# config = TaiVisionLMConfig.from_pretrained("./")
# preprocessor = transformers.SiglipImageProcessor.from_pretrained("google/siglip-base-patch16-224")
# preprocessor.image_seq_length = config.num_image_tokens
# tokenizer = transformers.AutoTokenizer.from_pretrained("benchang1110/Taiwan-tinyllama-v1.0-chat")
# processor = TaiVisionProcessor(tokenizer=tokenizer, image_processor=preprocessor)
# processor.save_pretrained("./")
# from PIL import Image
# import requests
# processor = TaiVisionProcessor.from_pretrained("./")
# url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
# image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
# prompt = "Hello< what is your name?"
# label = "I am fine, thank you."
# inputs = processor(prompts=prompt, labels=label,images=image, return_tensors="pt",padding="max_length",max_length=512)
# for key, value in inputs.items():
# print(f"{key}: {value}")
# print(processor.decode(inputs.input_ids.tolist()[0])) |