|
--- |
|
license: openrail++ |
|
--- |
|
|
|
# Contents |
|
|
|
This repository contains: |
|
1. Half-Precision LoRA versions of https://huggingface.co/mhdang/dpo-sdxl-text2image-v1 and https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1. |
|
2. Full-Precision offset versions of https://huggingface.co/mhdang/dpo-sdxl-text2image-v1 and https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1. |
|
|
|
# Creation |
|
|
|
## LoRA |
|
|
|
The LoRA were created using Kohya SS. |
|
|
|
1.5: https://civitai.com/models/240850/sd15-direct-preference-optimization-dpo extracted from https://huggingface.co/fp16-guy/Stable-Diffusion-v1-5_fp16_cleaned/blob/main/sd_1.5.safetensors. |
|
XL: https://civitai.com/models/238319/sd-xl-dpo-finetune-direct-preference-optimization extracted from https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors |
|
|
|
## Offsets |
|
|
|
The offsets were calculated in Pytorch using the following formula: |
|
|
|
1.5: https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1/blob/main/unet/diffusion_pytorch_model.safetensors - https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/unet/diffusion_pytorch_model.bin |
|
XL: https://huggingface.co/mhdang/dpo-sdxl-text2image-v1/blob/main/unet/diffusion_pytorch_model.safetensors - https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/unet/diffusion_pytorch_model.safetensors |
|
|
|
These can be added directly to any initialized UNet to inject DPO training into it. See the code below for usage (diffusers only.) |
|
|
|
# License |
|
|
|
These models are derivces from all OpenRail++ models, and are licensed under OpenRail++ themselves. |
|
|
|
# Usage |
|
|
|
## Offsets |
|
|
|
```py |
|
from __future__ import annotations |
|
|
|
from typing import TYPE_CHECKING |
|
if TYPE_CHECKING: |
|
from diffusers.models import UNet2DConditionModel |
|
|
|
def inject_dpo(unet: UNet2DConditionModel, dpo_offset_path: str, device: str, strict: bool = False) -> None: |
|
""" |
|
Injects DPO weights directly into your UNet. |
|
|
|
Args: |
|
unet (`UNet2DConditionModel`) |
|
The initialized UNet from your pipeline. |
|
dpo_offset_path (`str`) |
|
The path to the `.safetensors` file downloaded from https://huggingface.co/benjamin-paine/sd-dpo-offsets/. |
|
Make sure you're using the right file for the right base model. |
|
strict (`bool`, *optional*) |
|
Whether or not to raise errors when a weight cannot be applied. Defaults to false. |
|
""" |
|
from safetensors import safe_open |
|
with safe_open(dpo_offset_path, framework="pt", device=device) as f: |
|
for key in f.keys(): |
|
key_parts = key.split(".") |
|
current_layer = unet |
|
for key_part in key_parts[:-1]: |
|
current_layer = getattr(current_layer, key_part, None) |
|
if current_layer is None: |
|
break |
|
if current_layer is None: |
|
if strict: |
|
raise IOError(f"Couldn't find a layer to inject key {key} in.") |
|
continue |
|
layer_param = getattr(current_layer, key_parts[-1], None) |
|
if layer_param is None: |
|
if strict: |
|
raise IOError(f"Couldn't get weight parameter for key {key}") |
|
continue |
|
layer_param.data += f.get_tensor(key) |
|
``` |
|
|
|
Now you can use this function like so: |
|
|
|
```py |
|
from diffusers import StableDiffusionPipeline |
|
import huggingface_hub |
|
import torch |
|
|
|
# load sdv15 pipeline |
|
device = "cuda" |
|
model_id = "Lykon/dreamshaper-8" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
pipe.to(device) |
|
|
|
# make image |
|
prompt = "Two cats playing chess on a tree branch" |
|
generator = torch.Generator(device=device) |
|
generator.manual_seed(123456789) |
|
image = pipe(prompt, guidance_scale=7.5, generator=generator).images[0] |
|
image.save("cats_playing_chess.png") |
|
|
|
# download DPO offsets |
|
dpo_offset_path = huggingface_hub.hf_hub_download("benjamin-paine/sd-dpo-offsets", "sd_v15_unet_dpo_offset.safetensors") |
|
# inject |
|
inject_dpo(pipe.unet, dpo_offset_path, device) |
|
|
|
# make image again |
|
generator.manual_seed(123456789) |
|
image = pipe(prompt, guidance_scale=7.5, generator=generator).images[0] |
|
image.save("cats_playing_chess_dpo.png") |
|
``` |
|
|
|
`cats_playing_chess.png` |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64429aaf7feb866811b12f73/KqAohfKMXKVGTDpuBhhx6.png) |
|
|
|
`cats_playing_chess_dpo.png` |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64429aaf7feb866811b12f73/fY9j1q8ZazyNP4JbD0TTU.png) |
|
|
|
Or for XL: |
|
|
|
```py |
|
from diffusers import StableDiffusionXLPipeline |
|
import huggingface_hub |
|
import torch |
|
|
|
# load sdv15 pipeline |
|
device = "cuda" |
|
model_id = "Lykon/dreamshaper-xl-1-0" |
|
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
pipe.to(device) |
|
|
|
# make image |
|
prompt = "Two cats playing chess on a tree branch" |
|
generator = torch.Generator(device=device) |
|
generator.manual_seed(123456789) |
|
image = pipe(prompt, guidance_scale=7.5, generator=generator).images[0] |
|
image.save("cats_playing_chess_xl.png") |
|
|
|
# download DPO offsets |
|
dpo_offset_path = huggingface_hub.hf_hub_download("benjamin-paine/sd-dpo-offsets", "sd_xl_unet_dpo_offset.safetensors") |
|
# inject |
|
inject_dpo(pipe.unet, dpo_offset_path, device) |
|
|
|
# make image again |
|
generator.manual_seed(123456789) |
|
image = pipe(prompt, guidance_scale=7.5, generator=generator).images[0] |
|
image.save("cats_playing_chess_xl_dpo.png") |
|
``` |
|
|
|
`cats_playing_chess_xl.png` |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64429aaf7feb866811b12f73/BufmVzFBsoYX_jipzErIo.png) |
|
|
|
`cats_playing_chess_xl_dpo.png` |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64429aaf7feb866811b12f73/Rj9FXI-vmrMwvepMSLMe7.png) |