Edit model card

xtremedistil-l6-h384-emotion

This model is a fine-tuned version of microsoft/xtremedistil-l6-h384-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.928

This model can be quantized to int8 and retain accuracy

  • Accuracy 0.912
import transformers
import transformers.convert_graph_to_onnx as onnx_convert
from pathlib import Path

pipeline = transformers.pipeline("text-classification",model=model,tokenizer=tokenizer)
onnx_convert.convert_pytorch(pipeline, opset=11, output=Path("xtremedistil-l6-h384-emotion.onnx"), use_external_format=False)
from onnxruntime.quantization import quantize_dynamic, QuantType
quantize_dynamic("xtremedistil-l6-h384-emotion.onnx", "xtremedistil-l6-h384-emotion-int8.onnx", 
                 weight_type=QuantType.QUInt8)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 128
  • eval_batch_size: 8
  • seed: 42
  • num_epochs: 14

Training results

Epoch	Training Loss	Validation Loss	Accuracy
1	No log	0.960511	0.689000
2	No log	0.620671	0.824000
3	No log	0.435741	0.880000
4	0.797900	0.341771	0.896000
5	0.797900	0.294780	0.916000
6	0.797900	0.250572	0.918000
7	0.797900	0.232976	0.924000
8	0.277300	0.216347	0.924000
9	0.277300	0.202306	0.930500
10	0.277300	0.192530	0.930000
11	0.277300	0.192500	0.926500
12	0.181700	0.187347	0.928500
13	0.181700	0.185896	0.929500
14	0.181700	0.185154	0.928000
Downloads last month
29
Safetensors
Model size
22.7M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train bergum/xtremedistil-l6-h384-emotion

Evaluation results