metadata
license: apache-2.0
datasets:
- fistro/gromenauer
language:
- es
pipeline_tag: text-generation
Gromenauer-7B
Overview
Gromenauer-7B is a Spanish language model designed to understand and generate high-quality Spanish text. Developed using the robust Mistral architecture, this model has been trained on an extensive literary corpus, ensuring it captures a wide range of linguistic nuances, styles, and contexts found in Spanish literature.## Model Details
- Model Type: Mistral
- Sequence Length: 8192
- Hidden Dimension: 4096
- Intermediate Dimension: 14336
- Number of Layers: 32
- Number of Attention Heads: 32
- Number of Key-Value Heads: 8
- Activation Function: SiLU
- Initializer Range: 0.02
- Layer Norm Epsilon: 1.0e-05
- Use Flash Attention: Yes
- Gradient Checkpointing: Enabled (Block Size: 5)
- Sliding Window Attention: 4096
- Use Bias: No
Training Details
- Tokenizer: mistralai/Mistral-7B-v0.1
- Batch Size: 512
- Learning Rate: 1e-5
- Optimizer: Adam with beta1=0.9, beta2=0.95, epsilon=1e-8
- Weight Decay: 0.1
- Warmup Steps: 200
- Learning Rate Schedule: Cosine
- Number of Training Steps: 7000
Usage
To load the model in your project, you can use the following code:
from transformers import AutoModel, AutoTokenizer
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("bertin-project/Gromenauer-7B")
# Load the model
model = AutoModel.from_pretrained("bertin-project/Gromenauer-7B")
# Example usage
text = "Introduce aquí tu texto en español."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)