See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Meta-Llama-3.1-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- databricks-dolly-15k_train_data.json
ds_type: json
path: /workspace/input_data/databricks-dolly-15k_train_data.json
type:
field_input: instruction
field_instruction: context
field_output: response
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 10
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hours_to_complete: 3
hub_model_id: besimray/miner1_8d27b12f-38e5-4ec2-8775-bd249cc4a979_1730950388
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 1
mlflow_experiment_name: /tmp/databricks-dolly-15k_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
save_strategy: steps
sequence_len: 4096
started_at: '2024-11-07T03:33:08.527346'
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: besimray24-rayon
wandb_mode: online
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: 8d27b12f-38e5-4ec2-8775-bd249cc4a979
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
miner1_8d27b12f-38e5-4ec2-8775-bd249cc4a979_1730950388
This model is a fine-tuned version of unsloth/Meta-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3085
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6543 | 0.0003 | 1 | 2.1089 |
1.9124 | 0.0028 | 10 | 1.7352 |
1.7376 | 0.0056 | 20 | 1.3372 |
1.1217 | 0.0085 | 30 | 1.3265 |
2.0251 | 0.0113 | 40 | 1.3247 |
0.7312 | 0.0141 | 50 | 1.3040 |
1.6222 | 0.0169 | 60 | 1.3197 |
2.0554 | 0.0198 | 70 | 1.2938 |
2.0072 | 0.0226 | 80 | 1.2894 |
1.5481 | 0.0254 | 90 | 1.2990 |
1.5813 | 0.0282 | 100 | 1.3071 |
1.9418 | 0.0311 | 110 | 1.3085 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 23
Model tree for besimray/miner1_8d27b12f-38e5-4ec2-8775-bd249cc4a979_1730950388
Base model
unsloth/Meta-Llama-3.1-8B