Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Meta-Llama-3.1-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - thinker_train_data.json
  ds_type: json
  path: /workspace/input_data/thinker_train_data.json
  type:
    field_input: assistant
    field_instruction: reasoning
    field_output: user
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 10
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: besimray/miner_id_3_356953bd-f938-4862-a3a5-21d61fce48ce_1729861973
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 5
mlflow_experiment_name: /tmp/thinker_train_data.json
model_type: LlamaForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
save_strategy: steps
sequence_len: 4096
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: besimray24-rayon
wandb_mode: online
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: 356953bd-f938-4862-a3a5-21d61fce48ce
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

miner_id_3_356953bd-f938-4862-a3a5-21d61fce48ce_1729861973

This model is a fine-tuned version of unsloth/Meta-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7815

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
1.5337 0.0056 1 1.4862
0.9214 0.0563 10 0.9408
0.835 0.1125 20 0.8533
0.7869 0.1688 30 0.8354
0.8884 0.2250 40 0.8179
0.774 0.2813 50 0.8094
0.8592 0.3376 60 0.8055
0.7419 0.3938 70 0.8004
0.7387 0.4501 80 0.7927
0.7656 0.5063 90 0.7874
0.7726 0.5626 100 0.7867
0.9268 0.6188 110 0.7775
0.8375 0.6751 120 0.7803
0.8536 0.7314 130 0.7765
0.6834 0.7876 140 0.7728
0.8245 0.8439 150 0.7661
0.6808 0.9001 160 0.7710
0.773 0.9564 170 0.7659
0.6604 1.0127 180 0.7712
0.5496 1.0689 190 0.7819
0.5153 1.1252 200 0.7815

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
61
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for besimray/miner_id_3_356953bd-f938-4862-a3a5-21d61fce48ce_1729861973

Adapter
(57)
this model