metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
What's your favorite way to learn? Through books, videos, or experiments?
Experiments. I like seeing science in action.
- text: >-
Can you name a living organism's basic needs? Food, water... Can we change
the subject?
- text: >-
What do you find fascinating about the human body? That our brain works
like a supercomputer.
- text: >-
What's something you learned about in technology? We learned about coding.
I made a simple game.
- text: Do you know how to code? Nope. Sounds complicated.
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-small-en-v1.5
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
negative |
|
positive |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("bew/setfit-engagement-model-basic")
# Run inference
preds = model("Do you know how to code? Nope. Sounds complicated.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 6 | 15.0470 | 26 |
Label | Training Sample Count |
---|---|
negative | 79 |
positive | 70 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0028 | 1 | 0.2418 | - |
0.1416 | 50 | 0.2311 | - |
0.2833 | 100 | 0.2425 | - |
0.4249 | 150 | 0.0572 | - |
0.5666 | 200 | 0.0049 | - |
0.7082 | 250 | 0.0031 | - |
0.8499 | 300 | 0.0019 | - |
0.9915 | 350 | 0.0018 | - |
1.1331 | 400 | 0.0015 | - |
1.2748 | 450 | 0.001 | - |
1.4164 | 500 | 0.0011 | - |
1.5581 | 550 | 0.0008 | - |
1.6997 | 600 | 0.0008 | - |
1.8414 | 650 | 0.0007 | - |
1.9830 | 700 | 0.0008 | - |
2.1246 | 750 | 0.0007 | - |
2.2663 | 800 | 0.0005 | - |
2.4079 | 850 | 0.0006 | - |
2.5496 | 900 | 0.0005 | - |
2.6912 | 950 | 0.0005 | - |
2.8329 | 1000 | 0.0005 | - |
2.9745 | 1050 | 0.0005 | - |
3.1161 | 1100 | 0.0005 | - |
3.2578 | 1150 | 0.0005 | - |
3.3994 | 1200 | 0.0004 | - |
3.5411 | 1250 | 0.0004 | - |
3.6827 | 1300 | 0.0004 | - |
3.8244 | 1350 | 0.0004 | - |
3.9660 | 1400 | 0.0004 | - |
4.1076 | 1450 | 0.0004 | - |
4.2493 | 1500 | 0.0003 | - |
4.3909 | 1550 | 0.0004 | - |
4.5326 | 1600 | 0.0004 | - |
4.6742 | 1650 | 0.0003 | - |
4.8159 | 1700 | 0.0003 | - |
4.9575 | 1750 | 0.0004 | - |
5.0992 | 1800 | 0.0003 | - |
5.2408 | 1850 | 0.0003 | - |
5.3824 | 1900 | 0.0003 | - |
5.5241 | 1950 | 0.0003 | - |
5.6657 | 2000 | 0.0003 | - |
5.8074 | 2050 | 0.0003 | - |
5.9490 | 2100 | 0.0003 | - |
6.0907 | 2150 | 0.0003 | - |
6.2323 | 2200 | 0.0003 | - |
6.3739 | 2250 | 0.0003 | - |
6.5156 | 2300 | 0.0003 | - |
6.6572 | 2350 | 0.0003 | - |
6.7989 | 2400 | 0.0002 | - |
6.9405 | 2450 | 0.0003 | - |
7.0822 | 2500 | 0.0003 | - |
7.2238 | 2550 | 0.0003 | - |
7.3654 | 2600 | 0.0003 | - |
7.5071 | 2650 | 0.0003 | - |
7.6487 | 2700 | 0.0003 | - |
7.7904 | 2750 | 0.0003 | - |
7.9320 | 2800 | 0.0003 | - |
8.0737 | 2850 | 0.0003 | - |
8.2153 | 2900 | 0.0003 | - |
8.3569 | 2950 | 0.0003 | - |
8.4986 | 3000 | 0.0002 | - |
8.6402 | 3050 | 0.0003 | - |
8.7819 | 3100 | 0.0003 | - |
8.9235 | 3150 | 0.0003 | - |
9.0652 | 3200 | 0.0003 | - |
9.2068 | 3250 | 0.0002 | - |
9.3484 | 3300 | 0.0003 | - |
9.4901 | 3350 | 0.0002 | - |
9.6317 | 3400 | 0.0003 | - |
9.7734 | 3450 | 0.0003 | - |
9.9150 | 3500 | 0.0002 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.3.1
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.17.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}