GENIUS: generating text using sketches!
- Paper: GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation
- GitHub: GENIUS, Pre-training/Data Augmentation Tutorial
GENIUS中文版 可以根据你给出的一个草稿进行填词造句扩写,草稿可以是:
- 关键词组合,例如“今天[MASK]篮球[MASK]学校[MASK]”
- 短语组合,例如“自然语言处理[MASK]谷歌[MASK]通用人工智能[MASK]”
- 短句子组合,例如“我昨天做了一个梦[MASK]又遇见了她[MASK]曾经那段时光让人怀恋[MASK]”
- 以上的混合
How to use / 如何使用
# genius-chinese
from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline
checkpoint = 'beyond/genius-base-chinese'
tokenizer = BertTokenizer.from_pretrained(checkpoint)
genius_model = BartForConditionalGeneration.from_pretrained(checkpoint)
genius_generator = Text2TextGenerationPipeline(genius_model, tokenizer, device=0)
genius_generator
sketchs = [
"今天[MASK]篮球[MASK]学校[MASK]",
"自然语言处理[MASK]谷歌[MASK]通用人工智能[MASK]",
"我昨天做了一个梦[MASK]又遇见了她[MASK]曾经那段时光让人怀恋[MASK]",
"[MASK]疫情[MASK]公园[MASK]散步[MASK]",
"[MASK]酸菜鱼火锅[MASK]很美味,味道绝了[MASK]周末真开心[MASK]"
""
]
for sketch in sketchs:
print('input sketch:\n>>> ', sketch)
print('genius-chinese output:\n>>> ',genius_generator(sketch, max_length=100, do_sample=True, num_beams=3)[0]['generated_text'].replace(' ',''),'\n')
Model variations / GENIUS其他版本
Model | #params | Language | comment |
---|---|---|---|
genius-large |
406M | English | The version used in paper |
genius-large-k2t |
406M | English | keywords-to-text |
genius-base |
139M | English | smaller version |
genius-base-ps |
139M | English | pre-trained both in paragraphs and short sentences |
genius-base-chinese |
116M | 中文 | 在一千万纯净中文段落上预训练 |
Comparison / 效果对比
The following comes the comparison between BART-base-chinese and our proposed GENIUS-base-chinese.
下面对比了BART-base-chinese和我们提出的GENIUS-base-chinese在填词造句方面的表现:
input sketch:
>>> 今天[MASK]篮球[MASK]上海财经大学[MASK]
BART-chinese output:
>>> 今天的篮球是上海财经大学篮球
GENIUS-chinese output:
>>> 今天,我们邀请到了中国篮球联盟主席、上海财经大学校长孙建国先生作为主题发言。
input sketch:
>>> 自然语言处理[MASK]谷歌[MASK]通用人工智能[MASK]
BART-chinese output:
>>> 自然语言处理是谷歌的通用人工智能技术
GENIUS-chinese output:
>>> 自然语言处理是谷歌在通用人工智能领域的一个重要研究方向,其目的是为了促进人类智能的发展。
input sketch:
>>> 我昨天做了一个梦[MASK]又遇见了她[MASK]曾经那段时光让人怀恋[MASK]
BART-chinese output:
>>> 我昨天做了一个梦今天又遇见了她我曾经那段时光让人怀恋不已
GENIUS-chinese output:
>>> 我昨天做了一个梦,梦见了我的妈妈,又遇见了她,我知道她曾经那段时光让人怀恋,但是现在,我不知道该怎么回事了,我只是想告诉她,不要再回去了。
input sketch:
>>> [MASK]疫情[MASK]公园[MASK]漫步[MASK]
BART-chinese output:
>>> 在疫情防控公园内漫步徜徉
GENIUS-chinese output:
>>> 为了防止疫情扩散,公园内还设置了漫步区。
input sketch:
>>> [MASK]酸菜鱼火锅[MASK]很美味,味道绝了[MASK]周末真开心[MASK]
BART-chinese output:
>>> 这酸菜鱼火锅真的很美味,味道绝了这周末真开心啊
GENIUS-chinese output:
>>> 这个酸菜鱼火锅真的很美味,味道绝了,吃的时间也长了,周末真开心,吃完以后就回家了,很满意的一次,很喜欢的一个品牌。
可以看出,BART只能填补简单的一些词,无法对这些片段进行很连贯的连接,而GENIUS则可以扩写成连贯的句子甚至段落。
If you find our paper/code/demo useful, please cite our paper:
@article{guo2022genius,
title={GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation},
author={Guo, Biyang and Gong, Yeyun and Shen, Yelong and Han, Songqiao and Huang, Hailiang and Duan, Nan and Chen, Weizhu},
journal={arXiv preprint arXiv:2211.10330},
year={2022}
}
- Downloads last month
- 35
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.