Edit model card

Whisper Medium Bengali

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0895
  • Wer: 82.0349

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1543 0.2618 500 0.1669 48.6957
0.1152 0.5236 1000 0.1206 37.8234
0.0954 0.7853 1500 0.1000 35.2442
0.0535 1.0471 2000 0.0935 36.1322
0.055 1.3089 2500 0.0878 43.8732
0.0537 1.5707 3000 0.0836 55.5653
0.0564 1.8325 3500 0.0776 74.2668
0.0303 2.0942 4000 0.0819 84.9794
0.0291 2.3560 4500 0.0806 56.1679
0.0331 2.6178 5000 0.0784 85.8849
0.0325 2.8796 5500 0.0802 72.0834
0.0158 3.1414 6000 0.0895 82.0349

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bezaisingh/whisper-medium-bn-cv17

Finetuned
(462)
this model

Dataset used to train bezaisingh/whisper-medium-bn-cv17

Evaluation results