sd3-lora-celebrities
This is a LoRA derived from stabilityai/stable-diffusion-3-medium-diffusers.
The main validation prompt used during training was:
a studio portrait photograph of emma watson. she looks relaxed and happy.
Validation settings
- CFG:
5.0
- CFG Rescale:
0.2
- Steps:
50
- Sampler:
euler
- Seed:
2
- Resolution:
1280x768
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 5
- Training steps: 9316
- Learning rate: 0.0001
- Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: v_prediction
- Rescaled betas zero SNR: True
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Not used
- LoRA Rank: 16
- LoRA Alpha: 16
- LoRA Dropout: 0.1
- LoRA initialisation style: default
Datasets
celebrities-sd3
- Repeats: 0
- Total number of images: 1830
- Total number of aspect buckets: 27
- Resolution: 0.5 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
Inference
import torch
from diffusers import StableDiffusion3Pipeline
model_id = "sd3-lora-celebrities"
prompt = "a studio portrait photograph of emma watson. she looks relaxed and happy."
negative_prompt = "malformed, disgusting, overexposed, washed-out"
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt='blurry, cropped, ugly',
num_inference_steps=50,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1152,
height=768,
guidance_scale=5.0,
guidance_rescale=0.2,
).images[0]
image.save("output.png", format="PNG")
- Downloads last month
- 27