Edit model card

terminus-lite-base-v1

This is a full rank finetune derived from segmind/SSD-1B.

The main validation prompt used during training was:

a cute anime character named toast

Validation settings

  • CFG: 7.5
  • CFG Rescale: 0.7
  • Steps: 30
  • Sampler: euler
  • Seed: 420420420
  • Resolutions: 1024x1024,1152x960,896x1152

Note: The validation settings are not necessarily the same as the training settings.

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 600
  • Learning rate: 1e-06
  • Effective batch size: 16
    • Micro-batch size: 4
    • Gradient accumulation steps: 4
    • Number of GPUs: 1
  • Prediction type: v_prediction
  • Rescaled betas zero SNR: True
  • Optimizer: AdamW, stochastic bf16
  • Precision: Pure BF16
  • Xformers: Not used

Datasets

celebrities

  • Repeats: 4
  • Total number of images: 1232
  • Total number of aspect buckets: 2
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

movieposters

  • Repeats: 25
  • Total number of images: 1712
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

normalnudes

  • Repeats: 5
  • Total number of images: 1120
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

propagandaposters

  • Repeats: 0
  • Total number of images: 560
  • Total number of aspect buckets: 2
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

guys

  • Repeats: 5
  • Total number of images: 368
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

pixel-art

  • Repeats: 0
  • Total number of images: 1040
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

signs

  • Repeats: 25
  • Total number of images: 384
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

moviecollection

  • Repeats: 0
  • Total number of images: 1888
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

bookcovers

  • Repeats: 0
  • Total number of images: 800
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

nijijourney

  • Repeats: 0
  • Total number of images: 560
  • Total number of aspect buckets: 1
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

experimental

  • Repeats: 0
  • Total number of images: 3024
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

ethnic

  • Repeats: 0
  • Total number of images: 3072
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

sports

  • Repeats: 0
  • Total number of images: 784
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

gay

  • Repeats: 0
  • Total number of images: 1072
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

architecture

  • Repeats: 0
  • Total number of images: 4336
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

shutterstock

  • Repeats: 0
  • Total number of images: 21088
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

cinemamix-1mp

  • Repeats: 0
  • Total number of images: 9008
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

nsfw-1024

  • Repeats: 0
  • Total number of images: 10800
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

anatomy

  • Repeats: 5
  • Total number of images: 16400
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

bg20k-1024

  • Repeats: 0
  • Total number of images: 89280
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

yoga

  • Repeats: 0
  • Total number of images: 3600
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

photo-aesthetics

  • Repeats: 0
  • Total number of images: 33120
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

text-1mp

  • Repeats: 25
  • Total number of images: 13168
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

photo-concept-bucket

  • Repeats: 0
  • Total number of images: 567536
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

Inference

import torch
from diffusers import DiffusionPipeline



model_id = "terminus-lite-base-v1"
prompt = "a cute anime character named toast"
negative_prompt = "malformed, disgusting, overexposed, washed-out"

pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt='blurry, cropped, ugly',
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1152,
    height=768,
    guidance_scale=7.5,
    guidance_rescale=0.7,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
3,111
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bghira/terminus-lite-base-v1

Base model

segmind/SSD-1B
Finetuned
(6)
this model