Edit model card

Octopack

Table of Contents

  1. Model Summary
  2. Use
  3. Training
  4. Citation

Model Summary

SantaCoderPack is an pre-trained model with the same architecture of SantaCoder on CommitPack using this format:

<commit_before>code_before<commit_msg>message<commit_after>code_after

Use

Intended use

The model follows instructions provided in the input. We recommend prefacing your input with "def has_close_elements(numbers: List[float], threshold: float) -> bool:\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return FalseFix bugs in has_close_elements."

Feel free to share your generations in the Community tab!

Generation

# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigcode/santacoderpack"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Q<commit_before>def has_close_elements(numbers: List[float], threshold: float) -> bool:\n    for idx, elem in enumerate(numbers):\n        for idx2, elem2 in enumerate(numbers):\n            if idx != idx2:\n                distance = elem - elem2\n                if distance < threshold:\n                    return True\n\n    return False<commit_message>Fix bugs in has_close_elements.<commit_after>", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

Training

Model

  • Architecture: GPT-2 model with multi-query attention
  • Steps: 250k pretraining
  • Pretraining tokens: 131B
  • Precision: bfloat16

Hardware

  • Pretraining:
    • GPUs: 32 Tesla A100
    • Training time: 15 days

Software

Citation

@article{muennighoff2023octopack,
      title={OctoPack: Instruction Tuning Code Large Language Models}, 
      author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre},
      journal={arXiv preprint arXiv:2308.07124},
      year={2023}
}
Downloads last month
89
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train bigcode/santacoderpack

Collection including bigcode/santacoderpack

Evaluation results