davanstrien's picture
davanstrien HF staff
Librarian Bot: Add base_model information to model (#1)
9269f09
metadata
license: apache-2.0
library_name: transformers
tags:
  - lam
  - newspapers
datasets:
  - biglam/loc_beyond_words
pipeline_tag: object-detection
base_model: facebook/detr-resnet-50
model-index:
  - name: detr-resnet-50_fine_tuned_loc-2023
    results: []

detr-resnet-50_fine_tuned_loc-2023

This model is a fine-tuned version of facebook/detr-resnet-50 on the loc_beyond_words dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
3.731 0.16 50 2.6356
2.4875 0.31 100 2.2348
2.1786 0.47 150 2.1148
1.9845 0.62 200 1.8847
1.8507 0.78 250 1.8331
1.6813 0.94 300 1.5620
1.5613 1.09 350 1.5898
1.4966 1.25 400 1.4161
1.4831 1.41 450 1.4831
1.4587 1.56 500 1.3218
1.433 1.72 550 1.3529
1.33 1.88 600 1.2453
1.2842 2.03 650 1.2956
1.2807 2.19 700 1.1993
1.1767 2.34 750 1.1557
1.2134 2.5 800 1.1393
1.1897 2.66 850 1.2016
1.1784 2.81 900 1.1235
1.2016 2.97 950 1.1378
1.06 3.12 1000 1.0803
1.1124 3.28 1050 1.1145
1.1191 3.44 1100 1.0523
1.0819 3.59 1150 1.0165
1.1196 3.75 1200 1.0349
1.0534 3.91 1250 1.0441
1.0365 4.06 1300 1.1177
0.9853 4.22 1350 1.0721
0.9984 4.38 1400 0.9923
0.9802 4.53 1450 1.0079
1.04 4.69 1500 1.0198
1.098 4.84 1550 0.9788
1.079 5.0 1600 1.0291
1.0664 5.16 1650 0.9691
0.9715 5.31 1700 0.9380
0.9723 5.47 1750 1.0164
1.0019 5.62 1800 1.0064
0.9895 5.78 1850 1.0364
0.9835 5.94 1900 0.9848
0.994 6.09 1950 0.9353
0.9693 6.25 2000 0.9425
0.9413 6.41 2050 0.9173
0.9375 6.56 2100 0.9663
0.952 6.72 2150 0.8951
0.8927 6.88 2200 0.9099
0.8777 7.03 2250 0.9238
0.8976 7.19 2300 0.9715
0.9451 7.34 2350 0.9373
0.8972 7.5 2400 0.8959
0.9393 7.66 2450 1.0062
0.9 7.81 2500 0.8920
0.915 7.97 2550 0.8833
0.9018 8.12 2600 0.8671
0.8272 8.28 2650 0.9304
0.943 8.44 2700 0.8593
0.8667 8.59 2750 0.8875
0.871 8.75 2800 0.8457
0.9023 8.91 2850 0.8448
0.8733 9.06 2900 0.8261
0.8686 9.22 2950 0.8489
0.8412 9.38 3000 0.8244
0.8385 9.53 3050 0.8830
0.891 9.69 3100 0.8349
0.8692 9.84 3150 0.8672
0.8247 10.0 3200 0.8811
0.799 10.16 3250 0.8784

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3