Muennighoff's picture
Update README.md
99314f6
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
model-index:
  - name: sgpt-bloom-7b1-msmarco
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 68.05970149253731
          - type: ap
            value: 31.640363460776193
          - type: f1
            value: 62.50025574145796
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
          config: de
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 61.34903640256959
          - type: ap
            value: 75.18797161500426
          - type: f1
            value: 59.04772570730417
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
          config: en-ext
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 67.78110944527737
          - type: ap
            value: 19.218916023322706
          - type: f1
            value: 56.24477391445512
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
          config: ja
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 58.23340471092078
          - type: ap
            value: 13.20222967424681
          - type: f1
            value: 47.511718095460296
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1
        metrics:
          - type: accuracy
            value: 68.97232499999998
          - type: ap
            value: 63.53632885535693
          - type: f1
            value: 68.62038513152868
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 33.855999999999995
          - type: f1
            value: 33.43468222830134
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
          config: de
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 29.697999999999997
          - type: f1
            value: 29.39935388885501
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
          config: es
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 35.974000000000004
          - type: f1
            value: 35.25910820714383
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 35.922
          - type: f1
            value: 35.38637028933444
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
          config: ja
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 27.636
          - type: f1
            value: 27.178349955978266
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 32.632
          - type: f1
            value: 32.08014766494587
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3
        metrics:
          - type: map_at_1
            value: 23.684
          - type: map_at_10
            value: 38.507999999999996
          - type: map_at_100
            value: 39.677
          - type: map_at_1000
            value: 39.690999999999995
          - type: map_at_3
            value: 33.369
          - type: map_at_5
            value: 36.15
          - type: mrr_at_1
            value: 24.04
          - type: mrr_at_10
            value: 38.664
          - type: mrr_at_100
            value: 39.833
          - type: mrr_at_1000
            value: 39.847
          - type: mrr_at_3
            value: 33.476
          - type: mrr_at_5
            value: 36.306
          - type: ndcg_at_1
            value: 23.684
          - type: ndcg_at_10
            value: 47.282000000000004
          - type: ndcg_at_100
            value: 52.215
          - type: ndcg_at_1000
            value: 52.551
          - type: ndcg_at_3
            value: 36.628
          - type: ndcg_at_5
            value: 41.653
          - type: precision_at_1
            value: 23.684
          - type: precision_at_10
            value: 7.553
          - type: precision_at_100
            value: 0.97
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 15.363
          - type: precision_at_5
            value: 11.664
          - type: recall_at_1
            value: 23.684
          - type: recall_at_10
            value: 75.533
          - type: recall_at_100
            value: 97.013
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 46.088
          - type: recall_at_5
            value: 58.321
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8
        metrics:
          - type: v_measure
            value: 44.59375023881131
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3
        metrics:
          - type: v_measure
            value: 38.02921907752556
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c
        metrics:
          - type: map
            value: 59.97321570342109
          - type: mrr
            value: 73.18284746955106
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: 9ee918f184421b6bd48b78f6c714d86546106103
        metrics:
          - type: cos_sim_pearson
            value: 89.09091435741429
          - type: cos_sim_spearman
            value: 85.31459455332202
          - type: euclidean_pearson
            value: 79.3587681410798
          - type: euclidean_spearman
            value: 76.8174129874685
          - type: manhattan_pearson
            value: 79.57051762121769
          - type: manhattan_spearman
            value: 76.75837549768094
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (de-en)
          config: de-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 54.27974947807933
          - type: f1
            value: 54.00144411132214
          - type: precision
            value: 53.87119374071357
          - type: recall
            value: 54.27974947807933
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (fr-en)
          config: fr-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 97.3365617433414
          - type: f1
            value: 97.06141316310809
          - type: precision
            value: 96.92567319685965
          - type: recall
            value: 97.3365617433414
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (ru-en)
          config: ru-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 46.05472809144441
          - type: f1
            value: 45.30319274690595
          - type: precision
            value: 45.00015469655234
          - type: recall
            value: 46.05472809144441
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (zh-en)
          config: zh-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 98.10426540284361
          - type: f1
            value: 97.96384061786905
          - type: precision
            value: 97.89362822538178
          - type: recall
            value: 98.10426540284361
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 44fa15921b4c889113cc5df03dd4901b49161ab7
        metrics:
          - type: accuracy
            value: 84.33441558441558
          - type: f1
            value: 84.31653077470322
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55
        metrics:
          - type: v_measure
            value: 36.025318694698086
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1
        metrics:
          - type: v_measure
            value: 32.484889034590346
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 30.203999999999997
          - type: map_at_10
            value: 41.314
          - type: map_at_100
            value: 42.66
          - type: map_at_1000
            value: 42.775999999999996
          - type: map_at_3
            value: 37.614999999999995
          - type: map_at_5
            value: 39.643
          - type: mrr_at_1
            value: 37.482
          - type: mrr_at_10
            value: 47.075
          - type: mrr_at_100
            value: 47.845
          - type: mrr_at_1000
            value: 47.887
          - type: mrr_at_3
            value: 44.635000000000005
          - type: mrr_at_5
            value: 45.966
          - type: ndcg_at_1
            value: 37.482
          - type: ndcg_at_10
            value: 47.676
          - type: ndcg_at_100
            value: 52.915
          - type: ndcg_at_1000
            value: 54.82900000000001
          - type: ndcg_at_3
            value: 42.562
          - type: ndcg_at_5
            value: 44.852
          - type: precision_at_1
            value: 37.482
          - type: precision_at_10
            value: 9.142
          - type: precision_at_100
            value: 1.436
          - type: precision_at_1000
            value: 0.189
          - type: precision_at_3
            value: 20.458000000000002
          - type: precision_at_5
            value: 14.821000000000002
          - type: recall_at_1
            value: 30.203999999999997
          - type: recall_at_10
            value: 60.343
          - type: recall_at_100
            value: 82.58
          - type: recall_at_1000
            value: 94.813
          - type: recall_at_3
            value: 45.389
          - type: recall_at_5
            value: 51.800999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 30.889
          - type: map_at_10
            value: 40.949999999999996
          - type: map_at_100
            value: 42.131
          - type: map_at_1000
            value: 42.253
          - type: map_at_3
            value: 38.346999999999994
          - type: map_at_5
            value: 39.782000000000004
          - type: mrr_at_1
            value: 38.79
          - type: mrr_at_10
            value: 46.944
          - type: mrr_at_100
            value: 47.61
          - type: mrr_at_1000
            value: 47.650999999999996
          - type: mrr_at_3
            value: 45.053
          - type: mrr_at_5
            value: 46.101
          - type: ndcg_at_1
            value: 38.79
          - type: ndcg_at_10
            value: 46.286
          - type: ndcg_at_100
            value: 50.637
          - type: ndcg_at_1000
            value: 52.649
          - type: ndcg_at_3
            value: 42.851
          - type: ndcg_at_5
            value: 44.311
          - type: precision_at_1
            value: 38.79
          - type: precision_at_10
            value: 8.516
          - type: precision_at_100
            value: 1.3679999999999999
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 20.637
          - type: precision_at_5
            value: 14.318
          - type: recall_at_1
            value: 30.889
          - type: recall_at_10
            value: 55.327000000000005
          - type: recall_at_100
            value: 74.091
          - type: recall_at_1000
            value: 86.75500000000001
          - type: recall_at_3
            value: 44.557
          - type: recall_at_5
            value: 49.064
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 39.105000000000004
          - type: map_at_10
            value: 50.928
          - type: map_at_100
            value: 51.958000000000006
          - type: map_at_1000
            value: 52.017
          - type: map_at_3
            value: 47.638999999999996
          - type: map_at_5
            value: 49.624
          - type: mrr_at_1
            value: 44.639
          - type: mrr_at_10
            value: 54.261
          - type: mrr_at_100
            value: 54.913999999999994
          - type: mrr_at_1000
            value: 54.945
          - type: mrr_at_3
            value: 51.681999999999995
          - type: mrr_at_5
            value: 53.290000000000006
          - type: ndcg_at_1
            value: 44.639
          - type: ndcg_at_10
            value: 56.678
          - type: ndcg_at_100
            value: 60.649
          - type: ndcg_at_1000
            value: 61.855000000000004
          - type: ndcg_at_3
            value: 51.092999999999996
          - type: ndcg_at_5
            value: 54.096999999999994
          - type: precision_at_1
            value: 44.639
          - type: precision_at_10
            value: 9.028
          - type: precision_at_100
            value: 1.194
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 22.508
          - type: precision_at_5
            value: 15.661
          - type: recall_at_1
            value: 39.105000000000004
          - type: recall_at_10
            value: 70.367
          - type: recall_at_100
            value: 87.359
          - type: recall_at_1000
            value: 95.88
          - type: recall_at_3
            value: 55.581
          - type: recall_at_5
            value: 62.821000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 23.777
          - type: map_at_10
            value: 32.297
          - type: map_at_100
            value: 33.516
          - type: map_at_1000
            value: 33.592
          - type: map_at_3
            value: 30.001
          - type: map_at_5
            value: 31.209999999999997
          - type: mrr_at_1
            value: 25.989
          - type: mrr_at_10
            value: 34.472
          - type: mrr_at_100
            value: 35.518
          - type: mrr_at_1000
            value: 35.577
          - type: mrr_at_3
            value: 32.185
          - type: mrr_at_5
            value: 33.399
          - type: ndcg_at_1
            value: 25.989
          - type: ndcg_at_10
            value: 37.037
          - type: ndcg_at_100
            value: 42.699
          - type: ndcg_at_1000
            value: 44.725
          - type: ndcg_at_3
            value: 32.485
          - type: ndcg_at_5
            value: 34.549
          - type: precision_at_1
            value: 25.989
          - type: precision_at_10
            value: 5.718
          - type: precision_at_100
            value: 0.89
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 14.049
          - type: precision_at_5
            value: 9.672
          - type: recall_at_1
            value: 23.777
          - type: recall_at_10
            value: 49.472
          - type: recall_at_100
            value: 74.857
          - type: recall_at_1000
            value: 90.289
          - type: recall_at_3
            value: 37.086000000000006
          - type: recall_at_5
            value: 42.065999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 13.377
          - type: map_at_10
            value: 21.444
          - type: map_at_100
            value: 22.663
          - type: map_at_1000
            value: 22.8
          - type: map_at_3
            value: 18.857
          - type: map_at_5
            value: 20.426
          - type: mrr_at_1
            value: 16.542
          - type: mrr_at_10
            value: 25.326999999999998
          - type: mrr_at_100
            value: 26.323
          - type: mrr_at_1000
            value: 26.406000000000002
          - type: mrr_at_3
            value: 22.823
          - type: mrr_at_5
            value: 24.340999999999998
          - type: ndcg_at_1
            value: 16.542
          - type: ndcg_at_10
            value: 26.479000000000003
          - type: ndcg_at_100
            value: 32.29
          - type: ndcg_at_1000
            value: 35.504999999999995
          - type: ndcg_at_3
            value: 21.619
          - type: ndcg_at_5
            value: 24.19
          - type: precision_at_1
            value: 16.542
          - type: precision_at_10
            value: 5.075
          - type: precision_at_100
            value: 0.9339999999999999
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 10.697
          - type: precision_at_5
            value: 8.134
          - type: recall_at_1
            value: 13.377
          - type: recall_at_10
            value: 38.027
          - type: recall_at_100
            value: 63.439
          - type: recall_at_1000
            value: 86.354
          - type: recall_at_3
            value: 25
          - type: recall_at_5
            value: 31.306
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 28.368
          - type: map_at_10
            value: 39.305
          - type: map_at_100
            value: 40.637
          - type: map_at_1000
            value: 40.753
          - type: map_at_3
            value: 36.077999999999996
          - type: map_at_5
            value: 37.829
          - type: mrr_at_1
            value: 34.937000000000005
          - type: mrr_at_10
            value: 45.03
          - type: mrr_at_100
            value: 45.78
          - type: mrr_at_1000
            value: 45.827
          - type: mrr_at_3
            value: 42.348
          - type: mrr_at_5
            value: 43.807
          - type: ndcg_at_1
            value: 34.937000000000005
          - type: ndcg_at_10
            value: 45.605000000000004
          - type: ndcg_at_100
            value: 50.941
          - type: ndcg_at_1000
            value: 52.983000000000004
          - type: ndcg_at_3
            value: 40.366
          - type: ndcg_at_5
            value: 42.759
          - type: precision_at_1
            value: 34.937000000000005
          - type: precision_at_10
            value: 8.402
          - type: precision_at_100
            value: 1.2959999999999998
          - type: precision_at_1000
            value: 0.164
          - type: precision_at_3
            value: 19.217000000000002
          - type: precision_at_5
            value: 13.725000000000001
          - type: recall_at_1
            value: 28.368
          - type: recall_at_10
            value: 58.5
          - type: recall_at_100
            value: 80.67999999999999
          - type: recall_at_1000
            value: 93.925
          - type: recall_at_3
            value: 43.956
          - type: recall_at_5
            value: 50.065000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 24.851
          - type: map_at_10
            value: 34.758
          - type: map_at_100
            value: 36.081
          - type: map_at_1000
            value: 36.205999999999996
          - type: map_at_3
            value: 31.678
          - type: map_at_5
            value: 33.398
          - type: mrr_at_1
            value: 31.279
          - type: mrr_at_10
            value: 40.138
          - type: mrr_at_100
            value: 41.005
          - type: mrr_at_1000
            value: 41.065000000000005
          - type: mrr_at_3
            value: 37.519000000000005
          - type: mrr_at_5
            value: 38.986
          - type: ndcg_at_1
            value: 31.279
          - type: ndcg_at_10
            value: 40.534
          - type: ndcg_at_100
            value: 46.093
          - type: ndcg_at_1000
            value: 48.59
          - type: ndcg_at_3
            value: 35.473
          - type: ndcg_at_5
            value: 37.801
          - type: precision_at_1
            value: 31.279
          - type: precision_at_10
            value: 7.477
          - type: precision_at_100
            value: 1.2
          - type: precision_at_1000
            value: 0.159
          - type: precision_at_3
            value: 17.047
          - type: precision_at_5
            value: 12.306000000000001
          - type: recall_at_1
            value: 24.851
          - type: recall_at_10
            value: 52.528
          - type: recall_at_100
            value: 76.198
          - type: recall_at_1000
            value: 93.12
          - type: recall_at_3
            value: 38.257999999999996
          - type: recall_at_5
            value: 44.440000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 25.289833333333334
          - type: map_at_10
            value: 34.379333333333335
          - type: map_at_100
            value: 35.56916666666666
          - type: map_at_1000
            value: 35.68633333333333
          - type: map_at_3
            value: 31.63916666666666
          - type: map_at_5
            value: 33.18383333333334
          - type: mrr_at_1
            value: 30.081749999999996
          - type: mrr_at_10
            value: 38.53658333333333
          - type: mrr_at_100
            value: 39.37825
          - type: mrr_at_1000
            value: 39.43866666666666
          - type: mrr_at_3
            value: 36.19025
          - type: mrr_at_5
            value: 37.519749999999995
          - type: ndcg_at_1
            value: 30.081749999999996
          - type: ndcg_at_10
            value: 39.62041666666667
          - type: ndcg_at_100
            value: 44.74825
          - type: ndcg_at_1000
            value: 47.11366666666667
          - type: ndcg_at_3
            value: 35.000499999999995
          - type: ndcg_at_5
            value: 37.19283333333333
          - type: precision_at_1
            value: 30.081749999999996
          - type: precision_at_10
            value: 6.940249999999999
          - type: precision_at_100
            value: 1.1164166666666668
          - type: precision_at_1000
            value: 0.15025000000000002
          - type: precision_at_3
            value: 16.110416666666666
          - type: precision_at_5
            value: 11.474416666666668
          - type: recall_at_1
            value: 25.289833333333334
          - type: recall_at_10
            value: 51.01591666666667
          - type: recall_at_100
            value: 73.55275000000002
          - type: recall_at_1000
            value: 90.02666666666667
          - type: recall_at_3
            value: 38.15208333333334
          - type: recall_at_5
            value: 43.78458333333334
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 23.479
          - type: map_at_10
            value: 31.2
          - type: map_at_100
            value: 32.11
          - type: map_at_1000
            value: 32.214
          - type: map_at_3
            value: 29.093999999999998
          - type: map_at_5
            value: 30.415
          - type: mrr_at_1
            value: 26.840000000000003
          - type: mrr_at_10
            value: 34.153
          - type: mrr_at_100
            value: 34.971000000000004
          - type: mrr_at_1000
            value: 35.047
          - type: mrr_at_3
            value: 32.285000000000004
          - type: mrr_at_5
            value: 33.443
          - type: ndcg_at_1
            value: 26.840000000000003
          - type: ndcg_at_10
            value: 35.441
          - type: ndcg_at_100
            value: 40.150000000000006
          - type: ndcg_at_1000
            value: 42.74
          - type: ndcg_at_3
            value: 31.723000000000003
          - type: ndcg_at_5
            value: 33.71
          - type: precision_at_1
            value: 26.840000000000003
          - type: precision_at_10
            value: 5.552
          - type: precision_at_100
            value: 0.859
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 13.804
          - type: precision_at_5
            value: 9.600999999999999
          - type: recall_at_1
            value: 23.479
          - type: recall_at_10
            value: 45.442
          - type: recall_at_100
            value: 67.465
          - type: recall_at_1000
            value: 86.53
          - type: recall_at_3
            value: 35.315999999999995
          - type: recall_at_5
            value: 40.253
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 16.887
          - type: map_at_10
            value: 23.805
          - type: map_at_100
            value: 24.804000000000002
          - type: map_at_1000
            value: 24.932000000000002
          - type: map_at_3
            value: 21.632
          - type: map_at_5
            value: 22.845
          - type: mrr_at_1
            value: 20.75
          - type: mrr_at_10
            value: 27.686
          - type: mrr_at_100
            value: 28.522
          - type: mrr_at_1000
            value: 28.605000000000004
          - type: mrr_at_3
            value: 25.618999999999996
          - type: mrr_at_5
            value: 26.723999999999997
          - type: ndcg_at_1
            value: 20.75
          - type: ndcg_at_10
            value: 28.233000000000004
          - type: ndcg_at_100
            value: 33.065
          - type: ndcg_at_1000
            value: 36.138999999999996
          - type: ndcg_at_3
            value: 24.361
          - type: ndcg_at_5
            value: 26.111
          - type: precision_at_1
            value: 20.75
          - type: precision_at_10
            value: 5.124
          - type: precision_at_100
            value: 0.8750000000000001
          - type: precision_at_1000
            value: 0.131
          - type: precision_at_3
            value: 11.539000000000001
          - type: precision_at_5
            value: 8.273
          - type: recall_at_1
            value: 16.887
          - type: recall_at_10
            value: 37.774
          - type: recall_at_100
            value: 59.587
          - type: recall_at_1000
            value: 81.523
          - type: recall_at_3
            value: 26.837
          - type: recall_at_5
            value: 31.456
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 25.534000000000002
          - type: map_at_10
            value: 33.495999999999995
          - type: map_at_100
            value: 34.697
          - type: map_at_1000
            value: 34.805
          - type: map_at_3
            value: 31.22
          - type: map_at_5
            value: 32.277
          - type: mrr_at_1
            value: 29.944
          - type: mrr_at_10
            value: 37.723
          - type: mrr_at_100
            value: 38.645
          - type: mrr_at_1000
            value: 38.712999999999994
          - type: mrr_at_3
            value: 35.665
          - type: mrr_at_5
            value: 36.681999999999995
          - type: ndcg_at_1
            value: 29.944
          - type: ndcg_at_10
            value: 38.407000000000004
          - type: ndcg_at_100
            value: 43.877
          - type: ndcg_at_1000
            value: 46.312
          - type: ndcg_at_3
            value: 34.211000000000006
          - type: ndcg_at_5
            value: 35.760999999999996
          - type: precision_at_1
            value: 29.944
          - type: precision_at_10
            value: 6.343
          - type: precision_at_100
            value: 1.023
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 15.360999999999999
          - type: precision_at_5
            value: 10.428999999999998
          - type: recall_at_1
            value: 25.534000000000002
          - type: recall_at_10
            value: 49.204
          - type: recall_at_100
            value: 72.878
          - type: recall_at_1000
            value: 89.95
          - type: recall_at_3
            value: 37.533
          - type: recall_at_5
            value: 41.611
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 26.291999999999998
          - type: map_at_10
            value: 35.245
          - type: map_at_100
            value: 36.762
          - type: map_at_1000
            value: 36.983
          - type: map_at_3
            value: 32.439
          - type: map_at_5
            value: 33.964
          - type: mrr_at_1
            value: 31.423000000000002
          - type: mrr_at_10
            value: 39.98
          - type: mrr_at_100
            value: 40.791
          - type: mrr_at_1000
            value: 40.854
          - type: mrr_at_3
            value: 37.451
          - type: mrr_at_5
            value: 38.854
          - type: ndcg_at_1
            value: 31.423000000000002
          - type: ndcg_at_10
            value: 40.848
          - type: ndcg_at_100
            value: 46.35
          - type: ndcg_at_1000
            value: 49.166
          - type: ndcg_at_3
            value: 36.344
          - type: ndcg_at_5
            value: 38.36
          - type: precision_at_1
            value: 31.423000000000002
          - type: precision_at_10
            value: 7.767
          - type: precision_at_100
            value: 1.498
          - type: precision_at_1000
            value: 0.23700000000000002
          - type: precision_at_3
            value: 16.733
          - type: precision_at_5
            value: 12.213000000000001
          - type: recall_at_1
            value: 26.291999999999998
          - type: recall_at_10
            value: 51.184
          - type: recall_at_100
            value: 76.041
          - type: recall_at_1000
            value: 94.11500000000001
          - type: recall_at_3
            value: 38.257000000000005
          - type: recall_at_5
            value: 43.68
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 20.715
          - type: map_at_10
            value: 27.810000000000002
          - type: map_at_100
            value: 28.810999999999996
          - type: map_at_1000
            value: 28.904999999999998
          - type: map_at_3
            value: 25.069999999999997
          - type: map_at_5
            value: 26.793
          - type: mrr_at_1
            value: 22.366
          - type: mrr_at_10
            value: 29.65
          - type: mrr_at_100
            value: 30.615
          - type: mrr_at_1000
            value: 30.686999999999998
          - type: mrr_at_3
            value: 27.017999999999997
          - type: mrr_at_5
            value: 28.644
          - type: ndcg_at_1
            value: 22.366
          - type: ndcg_at_10
            value: 32.221
          - type: ndcg_at_100
            value: 37.313
          - type: ndcg_at_1000
            value: 39.871
          - type: ndcg_at_3
            value: 26.918
          - type: ndcg_at_5
            value: 29.813000000000002
          - type: precision_at_1
            value: 22.366
          - type: precision_at_10
            value: 5.139
          - type: precision_at_100
            value: 0.8240000000000001
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 11.275
          - type: precision_at_5
            value: 8.540000000000001
          - type: recall_at_1
            value: 20.715
          - type: recall_at_10
            value: 44.023
          - type: recall_at_100
            value: 67.458
          - type: recall_at_1000
            value: 87.066
          - type: recall_at_3
            value: 30.055
          - type: recall_at_5
            value: 36.852000000000004
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce
        metrics:
          - type: map_at_1
            value: 11.859
          - type: map_at_10
            value: 20.625
          - type: map_at_100
            value: 22.5
          - type: map_at_1000
            value: 22.689
          - type: map_at_3
            value: 16.991
          - type: map_at_5
            value: 18.781
          - type: mrr_at_1
            value: 26.906000000000002
          - type: mrr_at_10
            value: 39.083
          - type: mrr_at_100
            value: 39.978
          - type: mrr_at_1000
            value: 40.014
          - type: mrr_at_3
            value: 35.44
          - type: mrr_at_5
            value: 37.619
          - type: ndcg_at_1
            value: 26.906000000000002
          - type: ndcg_at_10
            value: 29.386000000000003
          - type: ndcg_at_100
            value: 36.510999999999996
          - type: ndcg_at_1000
            value: 39.814
          - type: ndcg_at_3
            value: 23.558
          - type: ndcg_at_5
            value: 25.557999999999996
          - type: precision_at_1
            value: 26.906000000000002
          - type: precision_at_10
            value: 9.342
          - type: precision_at_100
            value: 1.6969999999999998
          - type: precision_at_1000
            value: 0.231
          - type: precision_at_3
            value: 17.503
          - type: precision_at_5
            value: 13.655000000000001
          - type: recall_at_1
            value: 11.859
          - type: recall_at_10
            value: 35.929
          - type: recall_at_100
            value: 60.21300000000001
          - type: recall_at_1000
            value: 78.606
          - type: recall_at_3
            value: 21.727
          - type: recall_at_5
            value: 27.349
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: f097057d03ed98220bc7309ddb10b71a54d667d6
        metrics:
          - type: map_at_1
            value: 8.627
          - type: map_at_10
            value: 18.248
          - type: map_at_100
            value: 25.19
          - type: map_at_1000
            value: 26.741
          - type: map_at_3
            value: 13.286000000000001
          - type: map_at_5
            value: 15.126000000000001
          - type: mrr_at_1
            value: 64.75
          - type: mrr_at_10
            value: 71.865
          - type: mrr_at_100
            value: 72.247
          - type: mrr_at_1000
            value: 72.255
          - type: mrr_at_3
            value: 69.958
          - type: mrr_at_5
            value: 71.108
          - type: ndcg_at_1
            value: 53.25
          - type: ndcg_at_10
            value: 39.035
          - type: ndcg_at_100
            value: 42.735
          - type: ndcg_at_1000
            value: 50.166
          - type: ndcg_at_3
            value: 43.857
          - type: ndcg_at_5
            value: 40.579
          - type: precision_at_1
            value: 64.75
          - type: precision_at_10
            value: 30.75
          - type: precision_at_100
            value: 9.54
          - type: precision_at_1000
            value: 2.035
          - type: precision_at_3
            value: 47.333
          - type: precision_at_5
            value: 39
          - type: recall_at_1
            value: 8.627
          - type: recall_at_10
            value: 23.413
          - type: recall_at_100
            value: 48.037
          - type: recall_at_1000
            value: 71.428
          - type: recall_at_3
            value: 14.158999999999999
          - type: recall_at_5
            value: 17.002
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 829147f8f75a25f005913200eb5ed41fae320aa1
        metrics:
          - type: accuracy
            value: 44.865
          - type: f1
            value: 41.56625743266997
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: 1429cf27e393599b8b359b9b72c666f96b2525f9
        metrics:
          - type: map_at_1
            value: 57.335
          - type: map_at_10
            value: 68.29499999999999
          - type: map_at_100
            value: 68.69800000000001
          - type: map_at_1000
            value: 68.714
          - type: map_at_3
            value: 66.149
          - type: map_at_5
            value: 67.539
          - type: mrr_at_1
            value: 61.656
          - type: mrr_at_10
            value: 72.609
          - type: mrr_at_100
            value: 72.923
          - type: mrr_at_1000
            value: 72.928
          - type: mrr_at_3
            value: 70.645
          - type: mrr_at_5
            value: 71.938
          - type: ndcg_at_1
            value: 61.656
          - type: ndcg_at_10
            value: 73.966
          - type: ndcg_at_100
            value: 75.663
          - type: ndcg_at_1000
            value: 75.986
          - type: ndcg_at_3
            value: 69.959
          - type: ndcg_at_5
            value: 72.269
          - type: precision_at_1
            value: 61.656
          - type: precision_at_10
            value: 9.581000000000001
          - type: precision_at_100
            value: 1.054
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 27.743000000000002
          - type: precision_at_5
            value: 17.939
          - type: recall_at_1
            value: 57.335
          - type: recall_at_10
            value: 87.24300000000001
          - type: recall_at_100
            value: 94.575
          - type: recall_at_1000
            value: 96.75399999999999
          - type: recall_at_3
            value: 76.44800000000001
          - type: recall_at_5
            value: 82.122
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be
        metrics:
          - type: map_at_1
            value: 17.014000000000003
          - type: map_at_10
            value: 28.469
          - type: map_at_100
            value: 30.178
          - type: map_at_1000
            value: 30.369
          - type: map_at_3
            value: 24.63
          - type: map_at_5
            value: 26.891
          - type: mrr_at_1
            value: 34.259
          - type: mrr_at_10
            value: 43.042
          - type: mrr_at_100
            value: 43.91
          - type: mrr_at_1000
            value: 43.963
          - type: mrr_at_3
            value: 40.483999999999995
          - type: mrr_at_5
            value: 42.135
          - type: ndcg_at_1
            value: 34.259
          - type: ndcg_at_10
            value: 35.836
          - type: ndcg_at_100
            value: 42.488
          - type: ndcg_at_1000
            value: 45.902
          - type: ndcg_at_3
            value: 32.131
          - type: ndcg_at_5
            value: 33.697
          - type: precision_at_1
            value: 34.259
          - type: precision_at_10
            value: 10
          - type: precision_at_100
            value: 1.699
          - type: precision_at_1000
            value: 0.22999999999999998
          - type: precision_at_3
            value: 21.502
          - type: precision_at_5
            value: 16.296
          - type: recall_at_1
            value: 17.014000000000003
          - type: recall_at_10
            value: 42.832
          - type: recall_at_100
            value: 67.619
          - type: recall_at_1000
            value: 88.453
          - type: recall_at_3
            value: 29.537000000000003
          - type: recall_at_5
            value: 35.886
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: 766870b35a1b9ca65e67a0d1913899973551fc6c
        metrics:
          - type: map_at_1
            value: 34.558
          - type: map_at_10
            value: 48.039
          - type: map_at_100
            value: 48.867
          - type: map_at_1000
            value: 48.941
          - type: map_at_3
            value: 45.403
          - type: map_at_5
            value: 46.983999999999995
          - type: mrr_at_1
            value: 69.11500000000001
          - type: mrr_at_10
            value: 75.551
          - type: mrr_at_100
            value: 75.872
          - type: mrr_at_1000
            value: 75.887
          - type: mrr_at_3
            value: 74.447
          - type: mrr_at_5
            value: 75.113
          - type: ndcg_at_1
            value: 69.11500000000001
          - type: ndcg_at_10
            value: 57.25599999999999
          - type: ndcg_at_100
            value: 60.417
          - type: ndcg_at_1000
            value: 61.976
          - type: ndcg_at_3
            value: 53.258
          - type: ndcg_at_5
            value: 55.374
          - type: precision_at_1
            value: 69.11500000000001
          - type: precision_at_10
            value: 11.689
          - type: precision_at_100
            value: 1.418
          - type: precision_at_1000
            value: 0.163
          - type: precision_at_3
            value: 33.018
          - type: precision_at_5
            value: 21.488
          - type: recall_at_1
            value: 34.558
          - type: recall_at_10
            value: 58.447
          - type: recall_at_100
            value: 70.91199999999999
          - type: recall_at_1000
            value: 81.31
          - type: recall_at_3
            value: 49.527
          - type: recall_at_5
            value: 53.72
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4
        metrics:
          - type: accuracy
            value: 61.772000000000006
          - type: ap
            value: 57.48217702943605
          - type: f1
            value: 61.20495351356274
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: validation
          revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849
        metrics:
          - type: map_at_1
            value: 22.044
          - type: map_at_10
            value: 34.211000000000006
          - type: map_at_100
            value: 35.394
          - type: map_at_1000
            value: 35.443000000000005
          - type: map_at_3
            value: 30.318
          - type: map_at_5
            value: 32.535
          - type: mrr_at_1
            value: 22.722
          - type: mrr_at_10
            value: 34.842
          - type: mrr_at_100
            value: 35.954
          - type: mrr_at_1000
            value: 35.997
          - type: mrr_at_3
            value: 30.991000000000003
          - type: mrr_at_5
            value: 33.2
          - type: ndcg_at_1
            value: 22.722
          - type: ndcg_at_10
            value: 41.121
          - type: ndcg_at_100
            value: 46.841
          - type: ndcg_at_1000
            value: 48.049
          - type: ndcg_at_3
            value: 33.173
          - type: ndcg_at_5
            value: 37.145
          - type: precision_at_1
            value: 22.722
          - type: precision_at_10
            value: 6.516
          - type: precision_at_100
            value: 0.9400000000000001
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.093
          - type: precision_at_5
            value: 10.473
          - type: recall_at_1
            value: 22.044
          - type: recall_at_10
            value: 62.382000000000005
          - type: recall_at_100
            value: 88.914
          - type: recall_at_1000
            value: 98.099
          - type: recall_at_3
            value: 40.782000000000004
          - type: recall_at_5
            value: 50.322
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 93.68217054263563
          - type: f1
            value: 93.25810075739523
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
          config: de
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 82.05409974640745
          - type: f1
            value: 80.42814140324903
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
          config: es
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 93.54903268845896
          - type: f1
            value: 92.8909878077932
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 90.98340119010334
          - type: f1
            value: 90.51522537281313
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
          config: hi
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 89.33309429903191
          - type: f1
            value: 88.60371305209185
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
          config: th
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 60.4882459312839
          - type: f1
            value: 59.02590456131682
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 71.34290925672595
          - type: f1
            value: 54.44803151449109
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
          config: de
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 61.92448577063963
          - type: f1
            value: 43.125939975781854
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
          config: es
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 74.48965977318213
          - type: f1
            value: 51.855353687466696
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 69.11994989038521
          - type: f1
            value: 50.57872704171278
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
          config: hi
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 64.84761563284331
          - type: f1
            value: 43.61322970761394
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
          config: th
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 49.35623869801085
          - type: f1
            value: 33.48547326952042
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (af)
          config: af
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 47.85474108944183
          - type: f1
            value: 46.50175016795915
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (am)
          config: am
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 33.29858776059179
          - type: f1
            value: 31.803027601259082
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ar)
          config: ar
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 59.24680564895763
          - type: f1
            value: 57.037691806846865
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (az)
          config: az
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 45.23537323470073
          - type: f1
            value: 44.81126398428613
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (bn)
          config: bn
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 61.590450571620714
          - type: f1
            value: 59.247442149977104
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (cy)
          config: cy
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 44.9226630800269
          - type: f1
            value: 44.076183379991654
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (da)
          config: da
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 51.23066577000672
          - type: f1
            value: 50.20719330417618
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (de)
          config: de
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 56.0995292535306
          - type: f1
            value: 53.29421532133969
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (el)
          config: el
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 46.12642905178211
          - type: f1
            value: 44.441530267639635
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 69.67047747141896
          - type: f1
            value: 68.38493366054783
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (es)
          config: es
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 66.3483523873571
          - type: f1
            value: 65.13046416817832
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fa)
          config: fa
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 51.20040349697378
          - type: f1
            value: 49.02889836601541
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fi)
          config: fi
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 45.33288500336248
          - type: f1
            value: 42.91893101970983
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
          config: fr
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 66.95359784801613
          - type: f1
            value: 64.98788914810562
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (he)
          config: he
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 43.18090114324143
          - type: f1
            value: 41.31250407417542
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hi)
          config: hi
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 63.54068594485541
          - type: f1
            value: 61.94829361488948
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hu)
          config: hu
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 44.7343644922663
          - type: f1
            value: 43.23001702247849
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hy)
          config: hy
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 38.1271015467384
          - type: f1
            value: 36.94700198241727
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (id)
          config: id
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 64.05514458641561
          - type: f1
            value: 62.35033731674541
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (is)
          config: is
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 44.351042367182245
          - type: f1
            value: 43.13370397574502
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
          config: it
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 60.77000672494955
          - type: f1
            value: 59.71546868957779
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ja)
          config: ja
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 61.22057834566241
          - type: f1
            value: 59.447639306287044
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (jv)
          config: jv
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 50.9448554135844
          - type: f1
            value: 48.524338247875214
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ka)
          config: ka
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 33.8399462004035
          - type: f1
            value: 33.518999997305535
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (km)
          config: km
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 37.34028244788165
          - type: f1
            value: 35.6156599064704
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (kn)
          config: kn
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 53.544048419636844
          - type: f1
            value: 51.29299915455352
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ko)
          config: ko
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 53.35574983187625
          - type: f1
            value: 51.463936565192945
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (lv)
          config: lv
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 46.503026227303295
          - type: f1
            value: 46.049497734375514
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ml)
          config: ml
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 58.268325487558826
          - type: f1
            value: 56.10849656896158
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (mn)
          config: mn
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 40.27572293207801
          - type: f1
            value: 40.20097238549224
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ms)
          config: ms
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 59.64694014794889
          - type: f1
            value: 58.39584148789066
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (my)
          config: my
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 37.41761936785474
          - type: f1
            value: 35.04551731363685
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nb)
          config: nb
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 49.408204438466704
          - type: f1
            value: 48.39369057638714
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nl)
          config: nl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 52.09482178883659
          - type: f1
            value: 49.91518031712698
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
          config: pl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 50.477471418964356
          - type: f1
            value: 48.429495257184705
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pt)
          config: pt
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 66.69468728984532
          - type: f1
            value: 65.40306868707009
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ro)
          config: ro
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 50.52790854068594
          - type: f1
            value: 49.780400354514
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ru)
          config: ru
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 58.31540013449899
          - type: f1
            value: 56.144142926685134
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sl)
          config: sl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 47.74041694687289
          - type: f1
            value: 46.16767322761359
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sq)
          config: sq
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 48.94418291862811
          - type: f1
            value: 48.445352284756325
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sv)
          config: sv
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 50.78681909885676
          - type: f1
            value: 49.64882295494536
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sw)
          config: sw
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 49.811701412239415
          - type: f1
            value: 48.213234514449375
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ta)
          config: ta
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 56.39542703429725
          - type: f1
            value: 54.031981085233795
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (te)
          config: te
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 54.71082716879623
          - type: f1
            value: 52.513144113474596
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (th)
          config: th
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 44.425016812373904
          - type: f1
            value: 43.96016300057656
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tl)
          config: tl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 50.205110961667785
          - type: f1
            value: 48.86669996798709
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tr)
          config: tr
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 46.56355077336921
          - type: f1
            value: 45.18252022585022
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ur)
          config: ur
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 56.748486886348346
          - type: f1
            value: 54.29884570375382
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (vi)
          config: vi
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 64.52589105581708
          - type: f1
            value: 62.97947342861603
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 67.06792199058508
          - type: f1
            value: 65.36025601634017
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 62.89172831203766
          - type: f1
            value: 62.69803707054342
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (af)
          config: af
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 51.47276395427035
          - type: f1
            value: 49.37463208130799
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (am)
          config: am
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 34.86886348352387
          - type: f1
            value: 33.74178074349636
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ar)
          config: ar
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.20511096166778
          - type: f1
            value: 65.85812500602437
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (az)
          config: az
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.578345662407536
          - type: f1
            value: 44.44514917028003
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (bn)
          config: bn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 67.29657027572293
          - type: f1
            value: 67.24477523937466
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (cy)
          config: cy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 46.29455279085407
          - type: f1
            value: 43.8563839951935
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (da)
          config: da
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 53.52387357094821
          - type: f1
            value: 51.70977848027552
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (de)
          config: de
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 61.741761936785466
          - type: f1
            value: 60.219169644792295
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (el)
          config: el
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 48.957632817753876
          - type: f1
            value: 46.878428264460034
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 75.33624747814393
          - type: f1
            value: 75.9143846211171
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (es)
          config: es
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.34229993275049
          - type: f1
            value: 73.78165397558983
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fa)
          config: fa
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 53.174176193678555
          - type: f1
            value: 51.709679227778985
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fi)
          config: fi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.6906523201076
          - type: f1
            value: 41.54881682785664
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 72.9119031607263
          - type: f1
            value: 73.2742013056326
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (he)
          config: he
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 43.10356422326832
          - type: f1
            value: 40.8859122581252
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hi)
          config: hi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.27370544720914
          - type: f1
            value: 69.39544506405082
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hu)
          config: hu
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.16476126429052
          - type: f1
            value: 42.74022531579054
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hy)
          config: hy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 38.73234700739744
          - type: f1
            value: 37.40546754951026
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (id)
          config: id
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.12777404169468
          - type: f1
            value: 70.27219152812738
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (is)
          config: is
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.21318090114325
          - type: f1
            value: 41.934593213829366
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.57162071284466
          - type: f1
            value: 64.83341759045335
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ja)
          config: ja
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.75991930060525
          - type: f1
            value: 65.16549875504951
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (jv)
          config: jv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 54.79488903833223
          - type: f1
            value: 54.03616401426859
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ka)
          config: ka
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 32.992602555480836
          - type: f1
            value: 31.820068470018846
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (km)
          config: km
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 39.34431741761937
          - type: f1
            value: 36.436221665290105
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (kn)
          config: kn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 60.501008742434436
          - type: f1
            value: 60.051013712579085
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ko)
          config: ko
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 55.689307330195035
          - type: f1
            value: 53.94058032286942
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (lv)
          config: lv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.351042367182245
          - type: f1
            value: 42.05421666771541
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ml)
          config: ml
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.53127101546738
          - type: f1
            value: 65.98462024333497
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (mn)
          config: mn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 38.71553463349025
          - type: f1
            value: 37.44327037149584
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ms)
          config: ms
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 64.98991257565567
          - type: f1
            value: 63.87720198978004
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (my)
          config: my
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.839273705447205
          - type: f1
            value: 35.233967279698376
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nb)
          config: nb
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 51.79892400806993
          - type: f1
            value: 49.66926632125972
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nl)
          config: nl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 56.31809011432415
          - type: f1
            value: 53.832185336179826
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.979825151311374
          - type: f1
            value: 48.83013175441888
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pt)
          config: pt
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.45595158036315
          - type: f1
            value: 72.08708814699702
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ro)
          config: ro
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 53.68527236045729
          - type: f1
            value: 52.23278593929981
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ru)
          config: ru
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 61.60390047074647
          - type: f1
            value: 60.50391482195116
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sl)
          config: sl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 48.036314727639535
          - type: f1
            value: 46.43480413383716
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sq)
          config: sq
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 50.05716207128445
          - type: f1
            value: 48.85821859948888
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sv)
          config: sv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 51.728312037659705
          - type: f1
            value: 49.89292996950847
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sw)
          config: sw
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 54.21990585070613
          - type: f1
            value: 52.8711542984193
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ta)
          config: ta
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.770679219905844
          - type: f1
            value: 63.09441501491594
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (te)
          config: te
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.58574310692671
          - type: f1
            value: 61.61370697612978
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (th)
          config: th
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.17821116341628
          - type: f1
            value: 43.85143229183324
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tl)
          config: tl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 52.064559515803644
          - type: f1
            value: 50.94356892049626
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tr)
          config: tr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 47.205783456624076
          - type: f1
            value: 47.04223644120489
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ur)
          config: ur
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 64.25689307330195
          - type: f1
            value: 63.89944944984115
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (vi)
          config: vi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.60524546065905
          - type: f1
            value: 71.5634157334358
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.95427034297242
          - type: f1
            value: 74.39706882311063
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.29926025554808
          - type: f1
            value: 71.32045932560297
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: dcefc037ef84348e49b0d29109e891c01067226b
        metrics:
          - type: v_measure
            value: 31.054474964883806
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc
        metrics:
          - type: v_measure
            value: 29.259725940477523
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.785007883256572
          - type: mrr
            value: 32.983556622438456
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610
        metrics:
          - type: map_at_1
            value: 5.742
          - type: map_at_10
            value: 13.074
          - type: map_at_100
            value: 16.716
          - type: map_at_1000
            value: 18.238
          - type: map_at_3
            value: 9.600999999999999
          - type: map_at_5
            value: 11.129999999999999
          - type: mrr_at_1
            value: 47.988
          - type: mrr_at_10
            value: 55.958
          - type: mrr_at_100
            value: 56.58800000000001
          - type: mrr_at_1000
            value: 56.620000000000005
          - type: mrr_at_3
            value: 54.025
          - type: mrr_at_5
            value: 55.31
          - type: ndcg_at_1
            value: 46.44
          - type: ndcg_at_10
            value: 35.776
          - type: ndcg_at_100
            value: 32.891999999999996
          - type: ndcg_at_1000
            value: 41.835
          - type: ndcg_at_3
            value: 41.812
          - type: ndcg_at_5
            value: 39.249
          - type: precision_at_1
            value: 48.297000000000004
          - type: precision_at_10
            value: 26.687
          - type: precision_at_100
            value: 8.511000000000001
          - type: precision_at_1000
            value: 2.128
          - type: precision_at_3
            value: 39.009
          - type: precision_at_5
            value: 33.994
          - type: recall_at_1
            value: 5.742
          - type: recall_at_10
            value: 16.993
          - type: recall_at_100
            value: 33.69
          - type: recall_at_1000
            value: 66.75
          - type: recall_at_3
            value: 10.817
          - type: recall_at_5
            value: 13.256
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c
        metrics:
          - type: map_at_1
            value: 30.789
          - type: map_at_10
            value: 45.751999999999995
          - type: map_at_100
            value: 46.766000000000005
          - type: map_at_1000
            value: 46.798
          - type: map_at_3
            value: 41.746
          - type: map_at_5
            value: 44.046
          - type: mrr_at_1
            value: 34.618
          - type: mrr_at_10
            value: 48.288
          - type: mrr_at_100
            value: 49.071999999999996
          - type: mrr_at_1000
            value: 49.094
          - type: mrr_at_3
            value: 44.979
          - type: mrr_at_5
            value: 46.953
          - type: ndcg_at_1
            value: 34.589
          - type: ndcg_at_10
            value: 53.151
          - type: ndcg_at_100
            value: 57.537000000000006
          - type: ndcg_at_1000
            value: 58.321999999999996
          - type: ndcg_at_3
            value: 45.628
          - type: ndcg_at_5
            value: 49.474000000000004
          - type: precision_at_1
            value: 34.589
          - type: precision_at_10
            value: 8.731
          - type: precision_at_100
            value: 1.119
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 20.819
          - type: precision_at_5
            value: 14.728
          - type: recall_at_1
            value: 30.789
          - type: recall_at_10
            value: 73.066
          - type: recall_at_100
            value: 92.27
          - type: recall_at_1000
            value: 98.18
          - type: recall_at_3
            value: 53.632999999999996
          - type: recall_at_5
            value: 62.476
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: 6205996560df11e3a3da9ab4f926788fc30a7db4
        metrics:
          - type: map_at_1
            value: 54.993
          - type: map_at_10
            value: 69.07600000000001
          - type: map_at_100
            value: 70.05799999999999
          - type: map_at_1000
            value: 70.09
          - type: map_at_3
            value: 65.456
          - type: map_at_5
            value: 67.622
          - type: mrr_at_1
            value: 63.07000000000001
          - type: mrr_at_10
            value: 72.637
          - type: mrr_at_100
            value: 73.029
          - type: mrr_at_1000
            value: 73.033
          - type: mrr_at_3
            value: 70.572
          - type: mrr_at_5
            value: 71.86399999999999
          - type: ndcg_at_1
            value: 63.07000000000001
          - type: ndcg_at_10
            value: 74.708
          - type: ndcg_at_100
            value: 77.579
          - type: ndcg_at_1000
            value: 77.897
          - type: ndcg_at_3
            value: 69.69999999999999
          - type: ndcg_at_5
            value: 72.321
          - type: precision_at_1
            value: 63.07000000000001
          - type: precision_at_10
            value: 11.851
          - type: precision_at_100
            value: 1.481
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 30.747000000000003
          - type: precision_at_5
            value: 20.830000000000002
          - type: recall_at_1
            value: 54.993
          - type: recall_at_10
            value: 87.18900000000001
          - type: recall_at_100
            value: 98.137
          - type: recall_at_1000
            value: 99.833
          - type: recall_at_3
            value: 73.654
          - type: recall_at_5
            value: 80.36
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: b2805658ae38990172679479369a78b86de8c390
        metrics:
          - type: v_measure
            value: 35.53178375429036
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 54.520782970558265
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5
        metrics:
          - type: map_at_1
            value: 4.3229999999999995
          - type: map_at_10
            value: 10.979999999999999
          - type: map_at_100
            value: 12.867
          - type: map_at_1000
            value: 13.147
          - type: map_at_3
            value: 7.973
          - type: map_at_5
            value: 9.513
          - type: mrr_at_1
            value: 21.3
          - type: mrr_at_10
            value: 32.34
          - type: mrr_at_100
            value: 33.428999999999995
          - type: mrr_at_1000
            value: 33.489999999999995
          - type: mrr_at_3
            value: 28.999999999999996
          - type: mrr_at_5
            value: 31.019999999999996
          - type: ndcg_at_1
            value: 21.3
          - type: ndcg_at_10
            value: 18.619
          - type: ndcg_at_100
            value: 26.108999999999998
          - type: ndcg_at_1000
            value: 31.253999999999998
          - type: ndcg_at_3
            value: 17.842
          - type: ndcg_at_5
            value: 15.673
          - type: precision_at_1
            value: 21.3
          - type: precision_at_10
            value: 9.55
          - type: precision_at_100
            value: 2.0340000000000003
          - type: precision_at_1000
            value: 0.327
          - type: precision_at_3
            value: 16.667
          - type: precision_at_5
            value: 13.76
          - type: recall_at_1
            value: 4.3229999999999995
          - type: recall_at_10
            value: 19.387
          - type: recall_at_100
            value: 41.307
          - type: recall_at_1000
            value: 66.475
          - type: recall_at_3
            value: 10.143
          - type: recall_at_5
            value: 14.007
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
        metrics:
          - type: cos_sim_pearson
            value: 78.77975189382573
          - type: cos_sim_spearman
            value: 69.81522686267631
          - type: euclidean_pearson
            value: 71.37617936889518
          - type: euclidean_spearman
            value: 65.71738481148611
          - type: manhattan_pearson
            value: 71.58222165832424
          - type: manhattan_spearman
            value: 65.86851365286654
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f
        metrics:
          - type: cos_sim_pearson
            value: 77.75509450443367
          - type: cos_sim_spearman
            value: 69.66180222442091
          - type: euclidean_pearson
            value: 74.98512779786111
          - type: euclidean_spearman
            value: 69.5997451409469
          - type: manhattan_pearson
            value: 75.50135090962459
          - type: manhattan_spearman
            value: 69.94984748475302
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9
        metrics:
          - type: cos_sim_pearson
            value: 79.42363892383264
          - type: cos_sim_spearman
            value: 79.66529244176742
          - type: euclidean_pearson
            value: 79.50429208135942
          - type: euclidean_spearman
            value: 80.44767586416276
          - type: manhattan_pearson
            value: 79.58563944997708
          - type: manhattan_spearman
            value: 80.51452267103
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b
        metrics:
          - type: cos_sim_pearson
            value: 79.2749401478149
          - type: cos_sim_spearman
            value: 74.6076920702392
          - type: euclidean_pearson
            value: 73.3302002952881
          - type: euclidean_spearman
            value: 70.67029803077013
          - type: manhattan_pearson
            value: 73.52699344010296
          - type: manhattan_spearman
            value: 70.8517556194297
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6
        metrics:
          - type: cos_sim_pearson
            value: 83.20884740785921
          - type: cos_sim_spearman
            value: 83.80600789090722
          - type: euclidean_pearson
            value: 74.9154089816344
          - type: euclidean_spearman
            value: 75.69243899592276
          - type: manhattan_pearson
            value: 75.0312832634451
          - type: manhattan_spearman
            value: 75.78324960357642
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd
        metrics:
          - type: cos_sim_pearson
            value: 79.63194141000497
          - type: cos_sim_spearman
            value: 80.40118418350866
          - type: euclidean_pearson
            value: 72.07354384551088
          - type: euclidean_spearman
            value: 72.28819150373845
          - type: manhattan_pearson
            value: 72.08736119834145
          - type: manhattan_spearman
            value: 72.28347083261288
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
          config: ko-ko
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 66.78512789499386
          - type: cos_sim_spearman
            value: 66.89125587193288
          - type: euclidean_pearson
            value: 58.74535708627959
          - type: euclidean_spearman
            value: 59.62103716794647
          - type: manhattan_pearson
            value: 59.00494529143961
          - type: manhattan_spearman
            value: 59.832257846799806
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
          config: ar-ar
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 75.48960503523992
          - type: cos_sim_spearman
            value: 76.4223037534204
          - type: euclidean_pearson
            value: 64.93966381820944
          - type: euclidean_spearman
            value: 62.39697395373789
          - type: manhattan_pearson
            value: 65.54480770061505
          - type: manhattan_spearman
            value: 62.944204863043105
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
          config: en-ar
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 77.7331440643619
          - type: cos_sim_spearman
            value: 78.0748413292835
          - type: euclidean_pearson
            value: 38.533108233460304
          - type: euclidean_spearman
            value: 35.37638615280026
          - type: manhattan_pearson
            value: 41.0639726746513
          - type: manhattan_spearman
            value: 37.688161243671765
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
          config: en-de
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 58.4628923720782
          - type: cos_sim_spearman
            value: 59.10093128795948
          - type: euclidean_pearson
            value: 30.422902393436836
          - type: euclidean_spearman
            value: 27.837806030497457
          - type: manhattan_pearson
            value: 32.51576984630963
          - type: manhattan_spearman
            value: 29.181887010982514
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 86.87447904613737
          - type: cos_sim_spearman
            value: 87.06554974065622
          - type: euclidean_pearson
            value: 76.82669047851108
          - type: euclidean_spearman
            value: 75.45711985511991
          - type: manhattan_pearson
            value: 77.46644556452847
          - type: manhattan_spearman
            value: 76.0249120007112
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
          config: en-tr
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 17.784495723497468
          - type: cos_sim_spearman
            value: 11.79629537128697
          - type: euclidean_pearson
            value: -4.354328445994008
          - type: euclidean_spearman
            value: -6.984566116230058
          - type: manhattan_pearson
            value: -4.166751901507852
          - type: manhattan_spearman
            value: -6.984143198323786
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
          config: es-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 76.9009642643449
          - type: cos_sim_spearman
            value: 78.21764726338341
          - type: euclidean_pearson
            value: 50.578959144342925
          - type: euclidean_spearman
            value: 51.664379260719606
          - type: manhattan_pearson
            value: 53.95690880393329
          - type: manhattan_spearman
            value: 54.910058464050785
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
          config: es-es
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 86.41638022270219
          - type: cos_sim_spearman
            value: 86.00477030366811
          - type: euclidean_pearson
            value: 79.7224037788285
          - type: euclidean_spearman
            value: 79.21417626867616
          - type: manhattan_pearson
            value: 80.29412412756984
          - type: manhattan_spearman
            value: 79.49460867616206
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
          config: fr-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 79.90432664091082
          - type: cos_sim_spearman
            value: 80.46007940700204
          - type: euclidean_pearson
            value: 49.25348015214428
          - type: euclidean_spearman
            value: 47.13113020475859
          - type: manhattan_pearson
            value: 54.57291204043908
          - type: manhattan_spearman
            value: 51.98559736896087
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
          config: it-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 52.55164822309034
          - type: cos_sim_spearman
            value: 51.57629192137736
          - type: euclidean_pearson
            value: 16.63360593235354
          - type: euclidean_spearman
            value: 14.479679923782912
          - type: manhattan_pearson
            value: 18.524867185117472
          - type: manhattan_spearman
            value: 16.65940056664755
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
          config: nl-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 46.83690919715875
          - type: cos_sim_spearman
            value: 45.84993650002922
          - type: euclidean_pearson
            value: 6.173128686815117
          - type: euclidean_spearman
            value: 6.260781946306191
          - type: manhattan_pearson
            value: 7.328440452367316
          - type: manhattan_spearman
            value: 7.370842306497447
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 64.97916914277232
          - type: cos_sim_spearman
            value: 66.13392188807865
          - type: euclidean_pearson
            value: 65.3921146908468
          - type: euclidean_spearman
            value: 65.8381588635056
          - type: manhattan_pearson
            value: 65.8866165769975
          - type: manhattan_spearman
            value: 66.27774050472219
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de)
          config: de
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 25.605130445111545
          - type: cos_sim_spearman
            value: 30.054844562369254
          - type: euclidean_pearson
            value: 23.890611005408196
          - type: euclidean_spearman
            value: 29.07902600726761
          - type: manhattan_pearson
            value: 24.239478426621833
          - type: manhattan_spearman
            value: 29.48547576782375
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es)
          config: es
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 61.6665616159781
          - type: cos_sim_spearman
            value: 65.41310206289988
          - type: euclidean_pearson
            value: 68.38805493215008
          - type: euclidean_spearman
            value: 65.22777377603435
          - type: manhattan_pearson
            value: 69.37445390454346
          - type: manhattan_spearman
            value: 66.02437701858754
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
          config: pl
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 15.302891825626372
          - type: cos_sim_spearman
            value: 31.134517255070097
          - type: euclidean_pearson
            value: 12.672592658843143
          - type: euclidean_spearman
            value: 29.14881036784207
          - type: manhattan_pearson
            value: 13.528545327757735
          - type: manhattan_spearman
            value: 29.56217928148797
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (tr)
          config: tr
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 28.79299114515319
          - type: cos_sim_spearman
            value: 47.135864983626206
          - type: euclidean_pearson
            value: 40.66410787594309
          - type: euclidean_spearman
            value: 45.09585593138228
          - type: manhattan_pearson
            value: 42.02561630700308
          - type: manhattan_spearman
            value: 45.43979983670554
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ar)
          config: ar
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 46.00096625052943
          - type: cos_sim_spearman
            value: 58.67147426715496
          - type: euclidean_pearson
            value: 54.7154367422438
          - type: euclidean_spearman
            value: 59.003235142442634
          - type: manhattan_pearson
            value: 56.3116235357115
          - type: manhattan_spearman
            value: 60.12956331404423
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ru)
          config: ru
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 29.3396354650316
          - type: cos_sim_spearman
            value: 43.3632935734809
          - type: euclidean_pearson
            value: 31.18506539466593
          - type: euclidean_spearman
            value: 37.531745324803815
          - type: manhattan_pearson
            value: 32.829038232529015
          - type: manhattan_spearman
            value: 38.04574361589953
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 62.9596148375188
          - type: cos_sim_spearman
            value: 66.77653412402461
          - type: euclidean_pearson
            value: 64.53156585980886
          - type: euclidean_spearman
            value: 66.2884373036083
          - type: manhattan_pearson
            value: 65.2831035495143
          - type: manhattan_spearman
            value: 66.83641945244322
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
          config: fr
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 79.9138821493919
          - type: cos_sim_spearman
            value: 80.38097535004677
          - type: euclidean_pearson
            value: 76.2401499094322
          - type: euclidean_spearman
            value: 77.00897050735907
          - type: manhattan_pearson
            value: 76.69531453728563
          - type: manhattan_spearman
            value: 77.83189696428695
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-en)
          config: de-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 51.27009640779202
          - type: cos_sim_spearman
            value: 51.16120562029285
          - type: euclidean_pearson
            value: 52.20594985566323
          - type: euclidean_spearman
            value: 52.75331049709882
          - type: manhattan_pearson
            value: 52.2725118792549
          - type: manhattan_spearman
            value: 53.614847968995115
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-en)
          config: es-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 70.46044814118835
          - type: cos_sim_spearman
            value: 75.05760236668672
          - type: euclidean_pearson
            value: 72.80128921879461
          - type: euclidean_spearman
            value: 73.81164755219257
          - type: manhattan_pearson
            value: 72.7863795809044
          - type: manhattan_spearman
            value: 73.65932033818906
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
          config: it
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 61.89276840435938
          - type: cos_sim_spearman
            value: 65.65042955732055
          - type: euclidean_pearson
            value: 61.22969491863841
          - type: euclidean_spearman
            value: 63.451215637904724
          - type: manhattan_pearson
            value: 61.16138956945465
          - type: manhattan_spearman
            value: 63.34966179331079
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl-en)
          config: pl-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 56.377577221753626
          - type: cos_sim_spearman
            value: 53.31223653270353
          - type: euclidean_pearson
            value: 26.488793041564307
          - type: euclidean_spearman
            value: 19.524551741701472
          - type: manhattan_pearson
            value: 24.322868054606474
          - type: manhattan_spearman
            value: 19.50371443994939
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
          config: zh-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 69.3634693673425
          - type: cos_sim_spearman
            value: 68.45051245419702
          - type: euclidean_pearson
            value: 56.1417414374769
          - type: euclidean_spearman
            value: 55.89891749631458
          - type: manhattan_pearson
            value: 57.266417430882925
          - type: manhattan_spearman
            value: 56.57927102744128
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-it)
          config: es-it
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 60.04169437653179
          - type: cos_sim_spearman
            value: 65.49531007553446
          - type: euclidean_pearson
            value: 58.583860732586324
          - type: euclidean_spearman
            value: 58.80034792537441
          - type: manhattan_pearson
            value: 59.02513161664622
          - type: manhattan_spearman
            value: 58.42942047904558
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-fr)
          config: de-fr
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 48.81035211493999
          - type: cos_sim_spearman
            value: 53.27599246786967
          - type: euclidean_pearson
            value: 52.25710699032889
          - type: euclidean_spearman
            value: 55.22995695529873
          - type: manhattan_pearson
            value: 51.894901893217884
          - type: manhattan_spearman
            value: 54.95919975149795
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-pl)
          config: de-pl
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 36.75993101477816
          - type: cos_sim_spearman
            value: 43.050156692479355
          - type: euclidean_pearson
            value: 51.49021084746248
          - type: euclidean_spearman
            value: 49.54771253090078
          - type: manhattan_pearson
            value: 54.68410760796417
          - type: manhattan_spearman
            value: 48.19277197691717
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr-pl)
          config: fr-pl
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 48.553763306386486
          - type: cos_sim_spearman
            value: 28.17180849095055
          - type: euclidean_pearson
            value: 17.50739087826514
          - type: euclidean_spearman
            value: 16.903085094570333
          - type: manhattan_pearson
            value: 20.750046512534112
          - type: manhattan_spearman
            value: 5.634361698190111
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: 8913289635987208e6e7c72789e4be2fe94b6abd
        metrics:
          - type: cos_sim_pearson
            value: 82.17107190594417
          - type: cos_sim_spearman
            value: 80.89611873505183
          - type: euclidean_pearson
            value: 71.82491561814403
          - type: euclidean_spearman
            value: 70.33608835403274
          - type: manhattan_pearson
            value: 71.89538332420133
          - type: manhattan_spearman
            value: 70.36082395775944
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: 56a6d0140cf6356659e2a7c1413286a774468d44
        metrics:
          - type: map
            value: 79.77047154974562
          - type: mrr
            value: 94.25887021475256
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: a75ae049398addde9b70f6b268875f5cbce99089
        metrics:
          - type: map_at_1
            value: 56.328
          - type: map_at_10
            value: 67.167
          - type: map_at_100
            value: 67.721
          - type: map_at_1000
            value: 67.735
          - type: map_at_3
            value: 64.20400000000001
          - type: map_at_5
            value: 65.904
          - type: mrr_at_1
            value: 59.667
          - type: mrr_at_10
            value: 68.553
          - type: mrr_at_100
            value: 68.992
          - type: mrr_at_1000
            value: 69.004
          - type: mrr_at_3
            value: 66.22200000000001
          - type: mrr_at_5
            value: 67.739
          - type: ndcg_at_1
            value: 59.667
          - type: ndcg_at_10
            value: 72.111
          - type: ndcg_at_100
            value: 74.441
          - type: ndcg_at_1000
            value: 74.90599999999999
          - type: ndcg_at_3
            value: 67.11399999999999
          - type: ndcg_at_5
            value: 69.687
          - type: precision_at_1
            value: 59.667
          - type: precision_at_10
            value: 9.733
          - type: precision_at_100
            value: 1.09
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 26.444000000000003
          - type: precision_at_5
            value: 17.599999999999998
          - type: recall_at_1
            value: 56.328
          - type: recall_at_10
            value: 85.8
          - type: recall_at_100
            value: 96.167
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 72.433
          - type: recall_at_5
            value: 78.972
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea
        metrics:
          - type: cos_sim_accuracy
            value: 99.8019801980198
          - type: cos_sim_ap
            value: 94.92527097094644
          - type: cos_sim_f1
            value: 89.91935483870968
          - type: cos_sim_precision
            value: 90.65040650406505
          - type: cos_sim_recall
            value: 89.2
          - type: dot_accuracy
            value: 99.51782178217822
          - type: dot_ap
            value: 81.30756869559929
          - type: dot_f1
            value: 75.88235294117648
          - type: dot_precision
            value: 74.42307692307692
          - type: dot_recall
            value: 77.4
          - type: euclidean_accuracy
            value: 99.73069306930694
          - type: euclidean_ap
            value: 91.05040371796932
          - type: euclidean_f1
            value: 85.7889237199582
          - type: euclidean_precision
            value: 89.82494529540482
          - type: euclidean_recall
            value: 82.1
          - type: manhattan_accuracy
            value: 99.73762376237623
          - type: manhattan_ap
            value: 91.4823412839869
          - type: manhattan_f1
            value: 86.39836984207845
          - type: manhattan_precision
            value: 88.05815160955348
          - type: manhattan_recall
            value: 84.8
          - type: max_accuracy
            value: 99.8019801980198
          - type: max_ap
            value: 94.92527097094644
          - type: max_f1
            value: 89.91935483870968
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235
        metrics:
          - type: v_measure
            value: 55.13046832022158
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0
        metrics:
          - type: v_measure
            value: 34.31252463546675
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9
        metrics:
          - type: map
            value: 51.06639688231414
          - type: mrr
            value: 51.80205415499534
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122
        metrics:
          - type: cos_sim_pearson
            value: 31.963331462886956
          - type: cos_sim_spearman
            value: 33.59510652629926
          - type: dot_pearson
            value: 29.033733540882125
          - type: dot_spearman
            value: 31.550290638315506
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217
        metrics:
          - type: map_at_1
            value: 0.23600000000000002
          - type: map_at_10
            value: 2.09
          - type: map_at_100
            value: 12.466000000000001
          - type: map_at_1000
            value: 29.852
          - type: map_at_3
            value: 0.6859999999999999
          - type: map_at_5
            value: 1.099
          - type: mrr_at_1
            value: 88
          - type: mrr_at_10
            value: 94
          - type: mrr_at_100
            value: 94
          - type: mrr_at_1000
            value: 94
          - type: mrr_at_3
            value: 94
          - type: mrr_at_5
            value: 94
          - type: ndcg_at_1
            value: 86
          - type: ndcg_at_10
            value: 81.368
          - type: ndcg_at_100
            value: 61.879
          - type: ndcg_at_1000
            value: 55.282
          - type: ndcg_at_3
            value: 84.816
          - type: ndcg_at_5
            value: 82.503
          - type: precision_at_1
            value: 88
          - type: precision_at_10
            value: 85.6
          - type: precision_at_100
            value: 63.85999999999999
          - type: precision_at_1000
            value: 24.682000000000002
          - type: precision_at_3
            value: 88.667
          - type: precision_at_5
            value: 86
          - type: recall_at_1
            value: 0.23600000000000002
          - type: recall_at_10
            value: 2.25
          - type: recall_at_100
            value: 15.488
          - type: recall_at_1000
            value: 52.196
          - type: recall_at_3
            value: 0.721
          - type: recall_at_5
            value: 1.159
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (sqi-eng)
          config: sqi-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 12.7
          - type: f1
            value: 10.384182044950325
          - type: precision
            value: 9.805277385275312
          - type: recall
            value: 12.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fry-eng)
          config: fry-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 30.63583815028902
          - type: f1
            value: 24.623726947426373
          - type: precision
            value: 22.987809919828013
          - type: recall
            value: 30.63583815028902
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kur-eng)
          config: kur-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 10.487804878048781
          - type: f1
            value: 8.255945048627975
          - type: precision
            value: 7.649047253615001
          - type: recall
            value: 10.487804878048781
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tur-eng)
          config: tur-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 8.5
          - type: f1
            value: 6.154428783776609
          - type: precision
            value: 5.680727638128585
          - type: recall
            value: 8.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (deu-eng)
          config: deu-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 73
          - type: f1
            value: 70.10046605876393
          - type: precision
            value: 69.0018253968254
          - type: recall
            value: 73
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nld-eng)
          config: nld-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 32.7
          - type: f1
            value: 29.7428583868239
          - type: precision
            value: 28.81671359506905
          - type: recall
            value: 32.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ron-eng)
          config: ron-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 31.5
          - type: f1
            value: 27.228675552174003
          - type: precision
            value: 25.950062299847747
          - type: recall
            value: 31.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ang-eng)
          config: ang-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 35.82089552238806
          - type: f1
            value: 28.75836980510979
          - type: precision
            value: 26.971643613434658
          - type: recall
            value: 35.82089552238806
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ido-eng)
          config: ido-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 49.8
          - type: f1
            value: 43.909237401451776
          - type: precision
            value: 41.944763440988936
          - type: recall
            value: 49.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (jav-eng)
          config: jav-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 18.536585365853657
          - type: f1
            value: 15.020182570246751
          - type: precision
            value: 14.231108073213337
          - type: recall
            value: 18.536585365853657
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (isl-eng)
          config: isl-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 8.7
          - type: f1
            value: 6.2934784902885355
          - type: precision
            value: 5.685926293425392
          - type: recall
            value: 8.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (slv-eng)
          config: slv-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 12.879708383961116
          - type: f1
            value: 10.136118341751114
          - type: precision
            value: 9.571444036679436
          - type: recall
            value: 12.879708383961116
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cym-eng)
          config: cym-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 9.217391304347826
          - type: f1
            value: 6.965003297761793
          - type: precision
            value: 6.476093529199119
          - type: recall
            value: 9.217391304347826
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kaz-eng)
          config: kaz-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 4.3478260869565215
          - type: f1
            value: 3.3186971707677397
          - type: precision
            value: 3.198658632552104
          - type: recall
            value: 4.3478260869565215
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (est-eng)
          config: est-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 6.9
          - type: f1
            value: 4.760708297894056
          - type: precision
            value: 4.28409511756074
          - type: recall
            value: 6.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (heb-eng)
          config: heb-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 2.1999999999999997
          - type: f1
            value: 1.6862703878117107
          - type: precision
            value: 1.6048118233915603
          - type: recall
            value: 2.1999999999999997
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gla-eng)
          config: gla-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 3.0156815440289506
          - type: f1
            value: 2.0913257250659134
          - type: precision
            value: 1.9072775486461648
          - type: recall
            value: 3.0156815440289506
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mar-eng)
          config: mar-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 49
          - type: f1
            value: 45.5254456536713
          - type: precision
            value: 44.134609250398725
          - type: recall
            value: 49
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lat-eng)
          config: lat-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 33.5
          - type: f1
            value: 28.759893973182564
          - type: precision
            value: 27.401259116024836
          - type: recall
            value: 33.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bel-eng)
          config: bel-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 10.2
          - type: f1
            value: 8.030039981676275
          - type: precision
            value: 7.548748077210127
          - type: recall
            value: 10.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pms-eng)
          config: pms-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 38.095238095238095
          - type: f1
            value: 31.944999250262406
          - type: precision
            value: 30.04452690166976
          - type: recall
            value: 38.095238095238095
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gle-eng)
          config: gle-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 4.8
          - type: f1
            value: 3.2638960786708067
          - type: precision
            value: 3.0495382950729644
          - type: recall
            value: 4.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pes-eng)
          config: pes-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 15.8
          - type: f1
            value: 12.131087470371275
          - type: precision
            value: 11.141304011547815
          - type: recall
            value: 15.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nob-eng)
          config: nob-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 23.3
          - type: f1
            value: 21.073044636921384
          - type: precision
            value: 20.374220568287285
          - type: recall
            value: 23.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bul-eng)
          config: bul-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 24.9
          - type: f1
            value: 20.091060685364987
          - type: precision
            value: 18.899700591081224
          - type: recall
            value: 24.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cbk-eng)
          config: cbk-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 70.1
          - type: f1
            value: 64.62940836940835
          - type: precision
            value: 62.46559523809524
          - type: recall
            value: 70.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hun-eng)
          config: hun-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 7.199999999999999
          - type: f1
            value: 5.06613460576115
          - type: precision
            value: 4.625224463391809
          - type: recall
            value: 7.199999999999999
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (uig-eng)
          config: uig-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 1.7999999999999998
          - type: f1
            value: 1.2716249514772895
          - type: precision
            value: 1.2107445914723798
          - type: recall
            value: 1.7999999999999998
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (rus-eng)
          config: rus-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 65.5
          - type: f1
            value: 59.84399711399712
          - type: precision
            value: 57.86349567099567
          - type: recall
            value: 65.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (spa-eng)
          config: spa-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 95.7
          - type: f1
            value: 94.48333333333333
          - type: precision
            value: 93.89999999999999
          - type: recall
            value: 95.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hye-eng)
          config: hye-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 0.8086253369272237
          - type: f1
            value: 0.4962046191492002
          - type: precision
            value: 0.47272438578554393
          - type: recall
            value: 0.8086253369272237
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tel-eng)
          config: tel-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 69.23076923076923
          - type: f1
            value: 64.6227941099736
          - type: precision
            value: 63.03795877325289
          - type: recall
            value: 69.23076923076923
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (afr-eng)
          config: afr-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 20.599999999999998
          - type: f1
            value: 16.62410040660465
          - type: precision
            value: 15.598352437967069
          - type: recall
            value: 20.599999999999998
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mon-eng)
          config: mon-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 4.318181818181818
          - type: f1
            value: 2.846721192535661
          - type: precision
            value: 2.6787861417537147
          - type: recall
            value: 4.318181818181818
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (arz-eng)
          config: arz-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 74.84276729559748
          - type: f1
            value: 70.6638714185884
          - type: precision
            value: 68.86792452830188
          - type: recall
            value: 74.84276729559748
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hrv-eng)
          config: hrv-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 15.9
          - type: f1
            value: 12.793698974586706
          - type: precision
            value: 12.088118017657736
          - type: recall
            value: 15.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nov-eng)
          config: nov-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 59.92217898832685
          - type: f1
            value: 52.23086900129701
          - type: precision
            value: 49.25853869433636
          - type: recall
            value: 59.92217898832685
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gsw-eng)
          config: gsw-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 27.350427350427353
          - type: f1
            value: 21.033781033781032
          - type: precision
            value: 19.337955491801644
          - type: recall
            value: 27.350427350427353
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nds-eng)
          config: nds-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 29.299999999999997
          - type: f1
            value: 23.91597452425777
          - type: precision
            value: 22.36696598364942
          - type: recall
            value: 29.299999999999997
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ukr-eng)
          config: ukr-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 27.3
          - type: f1
            value: 22.059393517688886
          - type: precision
            value: 20.503235534170887
          - type: recall
            value: 27.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (uzb-eng)
          config: uzb-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 8.177570093457943
          - type: f1
            value: 4.714367017906037
          - type: precision
            value: 4.163882933965758
          - type: recall
            value: 8.177570093457943
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lit-eng)
          config: lit-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 5.800000000000001
          - type: f1
            value: 4.4859357432293825
          - type: precision
            value: 4.247814465614043
          - type: recall
            value: 5.800000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ina-eng)
          config: ina-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 78.4
          - type: f1
            value: 73.67166666666667
          - type: precision
            value: 71.83285714285714
          - type: recall
            value: 78.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lfn-eng)
          config: lfn-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 50.3
          - type: f1
            value: 44.85221545883311
          - type: precision
            value: 43.04913026243909
          - type: recall
            value: 50.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (zsm-eng)
          config: zsm-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 83.5
          - type: f1
            value: 79.95151515151515
          - type: precision
            value: 78.53611111111111
          - type: recall
            value: 83.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ita-eng)
          config: ita-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 69.89999999999999
          - type: f1
            value: 65.03756269256269
          - type: precision
            value: 63.233519536019536
          - type: recall
            value: 69.89999999999999
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cmn-eng)
          config: cmn-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 93.2
          - type: f1
            value: 91.44666666666666
          - type: precision
            value: 90.63333333333333
          - type: recall
            value: 93.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lvs-eng)
          config: lvs-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 8.3
          - type: f1
            value: 6.553388144729963
          - type: precision
            value: 6.313497782829976
          - type: recall
            value: 8.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (glg-eng)
          config: glg-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 83.6
          - type: f1
            value: 79.86243107769424
          - type: precision
            value: 78.32555555555555
          - type: recall
            value: 83.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ceb-eng)
          config: ceb-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 9.166666666666666
          - type: f1
            value: 6.637753604420271
          - type: precision
            value: 6.10568253585495
          - type: recall
            value: 9.166666666666666
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bre-eng)
          config: bre-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 7.3999999999999995
          - type: f1
            value: 4.6729483612322165
          - type: precision
            value: 4.103844520292658
          - type: recall
            value: 7.3999999999999995
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ben-eng)
          config: ben-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 80.30000000000001
          - type: f1
            value: 75.97666666666667
          - type: precision
            value: 74.16
          - type: recall
            value: 80.30000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swg-eng)
          config: swg-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 23.214285714285715
          - type: f1
            value: 16.88988095238095
          - type: precision
            value: 15.364937641723353
          - type: recall
            value: 23.214285714285715
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (arq-eng)
          config: arq-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 33.15038419319429
          - type: f1
            value: 27.747873024072415
          - type: precision
            value: 25.99320572578704
          - type: recall
            value: 33.15038419319429
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kab-eng)
          config: kab-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 2.6
          - type: f1
            value: 1.687059048752127
          - type: precision
            value: 1.5384884521299
          - type: recall
            value: 2.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fra-eng)
          config: fra-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 93.30000000000001
          - type: f1
            value: 91.44000000000001
          - type: precision
            value: 90.59166666666667
          - type: recall
            value: 93.30000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (por-eng)
          config: por-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 94.1
          - type: f1
            value: 92.61666666666667
          - type: precision
            value: 91.88333333333333
          - type: recall
            value: 94.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tat-eng)
          config: tat-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 5
          - type: f1
            value: 3.589591971281927
          - type: precision
            value: 3.3046491614532854
          - type: recall
            value: 5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (oci-eng)
          config: oci-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 45.9
          - type: f1
            value: 40.171969141969136
          - type: precision
            value: 38.30764368870302
          - type: recall
            value: 45.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pol-eng)
          config: pol-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 16.900000000000002
          - type: f1
            value: 14.094365204207351
          - type: precision
            value: 13.276519841269844
          - type: recall
            value: 16.900000000000002
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (war-eng)
          config: war-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 12.8
          - type: f1
            value: 10.376574912567156
          - type: precision
            value: 9.758423963284509
          - type: recall
            value: 12.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (aze-eng)
          config: aze-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 8.1
          - type: f1
            value: 6.319455355175778
          - type: precision
            value: 5.849948830628881
          - type: recall
            value: 8.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (vie-eng)
          config: vie-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 95.5
          - type: f1
            value: 94.19666666666667
          - type: precision
            value: 93.60000000000001
          - type: recall
            value: 95.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nno-eng)
          config: nno-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 19.1
          - type: f1
            value: 16.280080686081906
          - type: precision
            value: 15.451573089395668
          - type: recall
            value: 19.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cha-eng)
          config: cha-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 30.656934306569344
          - type: f1
            value: 23.2568647897115
          - type: precision
            value: 21.260309034031664
          - type: recall
            value: 30.656934306569344
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mhr-eng)
          config: mhr-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 2.1999999999999997
          - type: f1
            value: 1.556861047295521
          - type: precision
            value: 1.4555993437238521
          - type: recall
            value: 2.1999999999999997
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dan-eng)
          config: dan-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 27.500000000000004
          - type: f1
            value: 23.521682636223492
          - type: precision
            value: 22.345341306967683
          - type: recall
            value: 27.500000000000004
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ell-eng)
          config: ell-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 7.3999999999999995
          - type: f1
            value: 5.344253880846173
          - type: precision
            value: 4.999794279068863
          - type: recall
            value: 7.3999999999999995
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (amh-eng)
          config: amh-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 0.5952380952380952
          - type: f1
            value: 0.026455026455026457
          - type: precision
            value: 0.013528138528138528
          - type: recall
            value: 0.5952380952380952
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pam-eng)
          config: pam-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 7.3
          - type: f1
            value: 5.853140211779251
          - type: precision
            value: 5.505563080945322
          - type: recall
            value: 7.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hsb-eng)
          config: hsb-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 13.250517598343686
          - type: f1
            value: 9.676349506190704
          - type: precision
            value: 8.930392053553216
          - type: recall
            value: 13.250517598343686
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (srp-eng)
          config: srp-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 14.499999999999998
          - type: f1
            value: 11.68912588067557
          - type: precision
            value: 11.024716513105519
          - type: recall
            value: 14.499999999999998
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (epo-eng)
          config: epo-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 30.099999999999998
          - type: f1
            value: 26.196880936315146
          - type: precision
            value: 25.271714086169478
          - type: recall
            value: 30.099999999999998
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kzj-eng)
          config: kzj-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 6.4
          - type: f1
            value: 5.1749445942023335
          - type: precision
            value: 4.975338142029625
          - type: recall
            value: 6.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (awa-eng)
          config: awa-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 39.39393939393939
          - type: f1
            value: 35.005707393767096
          - type: precision
            value: 33.64342032053631
          - type: recall
            value: 39.39393939393939
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fao-eng)
          config: fao-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 18.3206106870229
          - type: f1
            value: 12.610893447220345
          - type: precision
            value: 11.079228765297467
          - type: recall
            value: 18.3206106870229
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mal-eng)
          config: mal-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 85.58951965065502
          - type: f1
            value: 83.30363944928548
          - type: precision
            value: 82.40026591554977
          - type: recall
            value: 85.58951965065502
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ile-eng)
          config: ile-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 65.7
          - type: f1
            value: 59.589642857142856
          - type: precision
            value: 57.392826797385624
          - type: recall
            value: 65.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bos-eng)
          config: bos-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 18.07909604519774
          - type: f1
            value: 13.65194306689995
          - type: precision
            value: 12.567953943826327
          - type: recall
            value: 18.07909604519774
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cor-eng)
          config: cor-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 4.6
          - type: f1
            value: 2.8335386392505013
          - type: precision
            value: 2.558444143575722
          - type: recall
            value: 4.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cat-eng)
          config: cat-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 90.7
          - type: f1
            value: 88.30666666666666
          - type: precision
            value: 87.195
          - type: recall
            value: 90.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (eus-eng)
          config: eus-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 57.699999999999996
          - type: f1
            value: 53.38433067253876
          - type: precision
            value: 51.815451335350346
          - type: recall
            value: 57.699999999999996
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (yue-eng)
          config: yue-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 80.60000000000001
          - type: f1
            value: 77.0290354090354
          - type: precision
            value: 75.61685897435898
          - type: recall
            value: 80.60000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swe-eng)
          config: swe-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 24.6
          - type: f1
            value: 19.52814960069739
          - type: precision
            value: 18.169084599880502
          - type: recall
            value: 24.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dtp-eng)
          config: dtp-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 5
          - type: f1
            value: 3.4078491753102376
          - type: precision
            value: 3.1757682319102387
          - type: recall
            value: 5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kat-eng)
          config: kat-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 1.2064343163538873
          - type: f1
            value: 0.4224313053283095
          - type: precision
            value: 0.3360484946842894
          - type: recall
            value: 1.2064343163538873
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (jpn-eng)
          config: jpn-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 76.1
          - type: f1
            value: 71.36246031746032
          - type: precision
            value: 69.5086544011544
          - type: recall
            value: 76.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (csb-eng)
          config: csb-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 14.229249011857709
          - type: f1
            value: 10.026578603653704
          - type: precision
            value: 9.09171178352764
          - type: recall
            value: 14.229249011857709
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (xho-eng)
          config: xho-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 8.450704225352112
          - type: f1
            value: 5.51214407186151
          - type: precision
            value: 4.928281812084629
          - type: recall
            value: 8.450704225352112
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (orv-eng)
          config: orv-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 7.664670658682635
          - type: f1
            value: 5.786190079917295
          - type: precision
            value: 5.3643643579244
          - type: recall
            value: 7.664670658682635
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ind-eng)
          config: ind-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 90.5
          - type: f1
            value: 88.03999999999999
          - type: precision
            value: 86.94833333333334
          - type: recall
            value: 90.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tuk-eng)
          config: tuk-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 7.389162561576355
          - type: f1
            value: 5.482366349556517
          - type: precision
            value: 5.156814449917898
          - type: recall
            value: 7.389162561576355
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (max-eng)
          config: max-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 41.54929577464789
          - type: f1
            value: 36.13520282534367
          - type: precision
            value: 34.818226488560995
          - type: recall
            value: 41.54929577464789
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swh-eng)
          config: swh-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 20.76923076923077
          - type: f1
            value: 16.742497560177643
          - type: precision
            value: 15.965759712090138
          - type: recall
            value: 20.76923076923077
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hin-eng)
          config: hin-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 88.1
          - type: f1
            value: 85.23176470588236
          - type: precision
            value: 84.04458333333334
          - type: recall
            value: 88.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dsb-eng)
          config: dsb-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 11.899791231732777
          - type: f1
            value: 8.776706659565102
          - type: precision
            value: 8.167815946521582
          - type: recall
            value: 11.899791231732777
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ber-eng)
          config: ber-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 6.1
          - type: f1
            value: 4.916589537178435
          - type: precision
            value: 4.72523017415345
          - type: recall
            value: 6.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tam-eng)
          config: tam-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 76.54723127035831
          - type: f1
            value: 72.75787187839306
          - type: precision
            value: 71.43338442869005
          - type: recall
            value: 76.54723127035831
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (slk-eng)
          config: slk-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 11.700000000000001
          - type: f1
            value: 9.975679190026007
          - type: precision
            value: 9.569927715653522
          - type: recall
            value: 11.700000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tgl-eng)
          config: tgl-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 13.100000000000001
          - type: f1
            value: 10.697335850115408
          - type: precision
            value: 10.113816082086341
          - type: recall
            value: 13.100000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ast-eng)
          config: ast-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 76.37795275590551
          - type: f1
            value: 71.12860892388451
          - type: precision
            value: 68.89763779527559
          - type: recall
            value: 76.37795275590551
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mkd-eng)
          config: mkd-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 13.700000000000001
          - type: f1
            value: 10.471861684067568
          - type: precision
            value: 9.602902567641697
          - type: recall
            value: 13.700000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (khm-eng)
          config: khm-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 0.554016620498615
          - type: f1
            value: 0.37034084643642423
          - type: precision
            value: 0.34676040281208437
          - type: recall
            value: 0.554016620498615
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ces-eng)
          config: ces-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 12.4
          - type: f1
            value: 9.552607451092534
          - type: precision
            value: 8.985175505050504
          - type: recall
            value: 12.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tzl-eng)
          config: tzl-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 33.65384615384615
          - type: f1
            value: 27.820512820512818
          - type: precision
            value: 26.09432234432234
          - type: recall
            value: 33.65384615384615
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (urd-eng)
          config: urd-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 74.5
          - type: f1
            value: 70.09686507936507
          - type: precision
            value: 68.3117857142857
          - type: recall
            value: 74.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ara-eng)
          config: ara-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 88.3
          - type: f1
            value: 85.37333333333333
          - type: precision
            value: 84.05833333333334
          - type: recall
            value: 88.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kor-eng)
          config: kor-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 25
          - type: f1
            value: 22.393124632031995
          - type: precision
            value: 21.58347686592367
          - type: recall
            value: 25
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (yid-eng)
          config: yid-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 0.589622641509434
          - type: f1
            value: 0.15804980033762941
          - type: precision
            value: 0.1393275384872965
          - type: recall
            value: 0.589622641509434
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fin-eng)
          config: fin-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 4.1000000000000005
          - type: f1
            value: 3.4069011332551775
          - type: precision
            value: 3.1784507042253516
          - type: recall
            value: 4.1000000000000005
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tha-eng)
          config: tha-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 3.102189781021898
          - type: f1
            value: 2.223851811694751
          - type: precision
            value: 2.103465682299194
          - type: recall
            value: 3.102189781021898
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (wuu-eng)
          config: wuu-eng
          split: test
          revision: ed9e4a974f867fd9736efcf222fc3a26487387a5
        metrics:
          - type: accuracy
            value: 83.1
          - type: f1
            value: 79.58255835667599
          - type: precision
            value: 78.09708333333333
          - type: recall
            value: 83.1
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b
        metrics:
          - type: map_at_1
            value: 2.322
          - type: map_at_10
            value: 8.959999999999999
          - type: map_at_100
            value: 15.136
          - type: map_at_1000
            value: 16.694
          - type: map_at_3
            value: 4.837000000000001
          - type: map_at_5
            value: 6.196
          - type: mrr_at_1
            value: 28.571
          - type: mrr_at_10
            value: 47.589999999999996
          - type: mrr_at_100
            value: 48.166
          - type: mrr_at_1000
            value: 48.169000000000004
          - type: mrr_at_3
            value: 43.197
          - type: mrr_at_5
            value: 45.646
          - type: ndcg_at_1
            value: 26.531
          - type: ndcg_at_10
            value: 23.982
          - type: ndcg_at_100
            value: 35.519
          - type: ndcg_at_1000
            value: 46.878
          - type: ndcg_at_3
            value: 26.801000000000002
          - type: ndcg_at_5
            value: 24.879
          - type: precision_at_1
            value: 28.571
          - type: precision_at_10
            value: 22.041
          - type: precision_at_100
            value: 7.4079999999999995
          - type: precision_at_1000
            value: 1.492
          - type: precision_at_3
            value: 28.571
          - type: precision_at_5
            value: 25.306
          - type: recall_at_1
            value: 2.322
          - type: recall_at_10
            value: 15.443999999999999
          - type: recall_at_100
            value: 45.918
          - type: recall_at_1000
            value: 79.952
          - type: recall_at_3
            value: 6.143
          - type: recall_at_5
            value: 8.737
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 66.5452
          - type: ap
            value: 12.99191723223892
          - type: f1
            value: 51.667665096195734
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: 62146448f05be9e52a36b8ee9936447ea787eede
        metrics:
          - type: accuracy
            value: 55.854555744199196
          - type: f1
            value: 56.131766302254185
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4
        metrics:
          - type: v_measure
            value: 37.27891385518074
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 83.53102461703523
          - type: cos_sim_ap
            value: 65.30753664579191
          - type: cos_sim_f1
            value: 61.739943872778305
          - type: cos_sim_precision
            value: 55.438891222175556
          - type: cos_sim_recall
            value: 69.65699208443272
          - type: dot_accuracy
            value: 80.38981939560112
          - type: dot_ap
            value: 53.52081118421347
          - type: dot_f1
            value: 54.232957844617346
          - type: dot_precision
            value: 48.43393486828459
          - type: dot_recall
            value: 61.60949868073878
          - type: euclidean_accuracy
            value: 82.23758717291531
          - type: euclidean_ap
            value: 60.361102792772535
          - type: euclidean_f1
            value: 57.50518791791561
          - type: euclidean_precision
            value: 51.06470106470107
          - type: euclidean_recall
            value: 65.8047493403694
          - type: manhattan_accuracy
            value: 82.14221851344102
          - type: manhattan_ap
            value: 60.341937223793366
          - type: manhattan_f1
            value: 57.53803596127247
          - type: manhattan_precision
            value: 51.08473188702415
          - type: manhattan_recall
            value: 65.85751978891821
          - type: max_accuracy
            value: 83.53102461703523
          - type: max_ap
            value: 65.30753664579191
          - type: max_f1
            value: 61.739943872778305
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.75305623471883
          - type: cos_sim_ap
            value: 85.46387153880272
          - type: cos_sim_f1
            value: 77.91527673159008
          - type: cos_sim_precision
            value: 72.93667315828353
          - type: cos_sim_recall
            value: 83.62334462580844
          - type: dot_accuracy
            value: 85.08169363915086
          - type: dot_ap
            value: 74.96808060965559
          - type: dot_f1
            value: 71.39685033990366
          - type: dot_precision
            value: 64.16948111759288
          - type: dot_recall
            value: 80.45888512473051
          - type: euclidean_accuracy
            value: 85.84235650250321
          - type: euclidean_ap
            value: 78.42045145247211
          - type: euclidean_f1
            value: 70.32669630775179
          - type: euclidean_precision
            value: 70.6298050788227
          - type: euclidean_recall
            value: 70.02617801047121
          - type: manhattan_accuracy
            value: 85.86176116738464
          - type: manhattan_ap
            value: 78.54012451558276
          - type: manhattan_f1
            value: 70.56508080693389
          - type: manhattan_precision
            value: 69.39626293456413
          - type: manhattan_recall
            value: 71.77394518016631
          - type: max_accuracy
            value: 88.75305623471883
          - type: max_ap
            value: 85.46387153880272
          - type: max_f1
            value: 77.91527673159008

Usage

For usage instructions, refer to: https://github.com/Muennighoff/sgpt#asymmetric-semantic-search-be

The model was trained with the command

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch examples/training/ms_marco/train_bi-encoder_mnrl.py --model_name bigscience/bloom-7b1 --train_batch_size 32 --eval_batch_size 16 --freezenonbias --specb --lr 4e-4 --wandb --wandbwatchlog gradients --pooling weightedmean --gradcache --chunksize 8

Evaluation Results

{"ndcgs": {"sgpt-bloom-7b1-msmarco": {"scifact": {"NDCG@10": 0.71824}, "nfcorpus": {"NDCG@10": 0.35748}, "arguana": {"NDCG@10": 0.47281}, "scidocs": {"NDCG@10": 0.18435}, "fiqa": {"NDCG@10": 0.35736}, "cqadupstack": {"NDCG@10": 0.3708525}, "quora": {"NDCG@10": 0.74655}, "trec-covid": {"NDCG@10": 0.82731}, "webis-touche2020": {"NDCG@10": 0.2365}}}

See the evaluation folder or MTEB for more results.

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 15600 with parameters:

{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

The model uses BitFit, weighted-mean pooling & GradCache, for details see: https://arxiv.org/abs/2202.08904

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 0.0004
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: BloomModel 
  (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)

Citing & Authors

@article{muennighoff2022sgpt,
  title={SGPT: GPT Sentence Embeddings for Semantic Search},
  author={Muennighoff, Niklas},
  journal={arXiv preprint arXiv:2202.08904},
  year={2022}
}