metadata
license: cc
datasets:
- VMware/open-instruct-v1-oasst-dolly-hhrlhf
language:
- en
library_name: transformers
pipeline_tag: text-generation
blackmount8/open-llama-13B-open-instruct-ct2-int8_float16
Int8_float16version of VMware/open-llama-13b-open-instruct, quantized using CTranslate2.
VMware/open-llama-13B-open-instruct
Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for <b>
COMMERCIAL USE </b>
. <br>
<b>
NOTE </b>
: The model was trained using the Alpaca prompt template
<b>
NOTE </b>
: Fast tokenizer results in incorrect encoding, set the use_fast = False
parameter, when instantiating the tokenizer
License
<b>
Commercially Viable</b>
- Instruction dataset, VMware/open-instruct-v1-oasst-dolly-hhrlhf is under cc-by-sa-3.0
- Language Model, (openlm-research/open_llama_13b) is under apache-2.0
Nomenclature
- Model : Open-llama
- Model Size: 13B parameters
- Dataset: Open-instruct-v1 (oasst, dolly, hhrlhf)
Use in CTranslate2
import ctranslate2
from transformers import AutoTokenizer
model_name = "blackmount8/open-llama-13b-open-instruct-ct2-int8_float16"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, padding_side="left", truncation_side="left")
model = ctranslate2.Generator(model_name, device="auto", compute_type="int8_float16")
input_text = ["What is the meaning of stonehenge?", "Hello mate!"]
input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids
input_tokens = [tokenizer.convert_ids_to_tokens(ele) for ele in input_ids]
outputs = model.generate_batch(input_tokens, max_length=128)
output_tokens = [
ele.sequences_ids[0] for ele in outputs
]
output = tokenizer.batch_decode(output_tokens)
print(output)